Ayuda
Ir al contenido

Dialnet


Variable-stiffness joints with embedded force sensor for high-performance wearable gait exoskeletons

  • Autores: Manuel Javier Cestari Soto
  • Directores de la Tesis: Andrés Díaz Lantada (dir. tes.), Elena García Armada (codir. tes.)
  • Lectura: En la Universidad Politécnica de Madrid ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Juan Manuel Muñoz-Guijosa (presid.), Enrique Chacón Tanarro (secret.), Roemi Emilia Fernández Saavedra (voc.), Pierre Cherelle (voc.), Pablo González de Santos (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • El creciente campo de exoesqueletos y dispositivos portátiles de asistencia al caminado y rehabilitación ha avanzado considerablemente en los últimos años. Hoy en día, el uso actual de los dispositivos comerciales se centra en la rehabilitación de lesionados medulares en el hospital, sin embargo, el propósito retador de esta tecnología: proporcionar asistencia a la marcha en las actividades de la vida diaria al amplio grupo de trastornos neurológicos que afectan al caminar y el equilibrio. Un número de dificultades hacen que este objetivo un desafío, para nombrar unos pocos: (1) El carácter degenerativa de la mayoría de los trastornos neurológicos y la muy compleja sintomatología asociada a la enfermedad requiere un exoesqueleto inteligente capaz de autoadaptarse a la patología; (2) La asistencia a las actividades de la vida diaria requiere un exoesqueleto de marcha para su uso particular, siempre con la autonomía energética para -al menos- un viaje. Las razones por las que los dispositivos comerciales actuales no se acercan a esta capacidad son en su mayoría relacionados con el enfoque de la naturaleza y el control de los sistemas de actuación articular. En la actualidad, los dispositivos comerciales presentan articulaciones con actuadores rígidos que no permiten adaptarse a entornos impredecibles. Estos actuadores pueden consumir más energía y pueden no ser apropiados para la interacción hombremáquina. Actuadores adaptables están siendo diseñados e implementados debido a su capacidad para reducir al mínimo las fuerzas debido a choques, por su capacidad de interactuar de forma segura con el usuario, así como su capacidad para almacenar y liberar energía en elementos elásticos. Muchos estudios basados en simulaciones han evaluado los beneficios de incorporar articulaciones adaptables en los exoesqueletos. Movimientos espasmódicos y espasticidad son comunes entre los pacientes con deficiencias motoras; y debido a estos estudios actuadores adaptables pueden absorber eficientemente estas perturbaciones y mejorar el control de las articulaciones.

      Este trabajo doctoral apunta a avanzar más allá del estado del arte en sistemas de actuación articular para exoesqueletos de marcha con los propósitos de: permitir la adaptabilidad de las articulaciones a distintas sintomatologías y mejoras en la eficiencia energética, así como brindar mayor adaptabilidad durante el caminado. Mediante el análisis de la biomecánica de la locomoción, se han identificado y analizado las características y requerimientos de las principales articulaciones involucradas en el ciclo de locomoción dinámica. Este trabajo doctoral presenta el diseño y desarrollo de dos novedosos actuadores adaptables que cumplen con los requisitos para la actuación de las articulaciones de exoesqueletos. La característica principal de los nuevos sistemas es que los elementos que permiten la adaptabilidad, simultáneamente permiten la medición del par ejercido por la articulación.

      Concebido como actuadores adaptables controlados en fuerza, estos actuadores con rigidez ajustable y sensor incorporado, ARES y ARES-XL están destinados a ser implementados en las articulaciones del exoesqueleto pediátrico ATLAS. El dispositivo resultante es un exoesqueleto adaptable y controlado en fuerza, para niños con enfermedades neuromusculares que permite la explotación de la dinámica intrínseca durante el ciclo de locomoción. Las capacidades de ARES son presentadas y evaluadas, demostrando sus capacidades de medición de par del motor a diferentes niveles de rigidez.

      La versatilidad de las articulaciones, como en el caso de la rodilla, puede ser emulada y aprovechada al incorporar elementos que puedan controlar el uso de la energía almacenada en las fases apropiadas de la marcha. ARES-XL permite la implementación de un mecanismo de bloqueo en combinación con su capacidad de cero rigidez y gran rango de deflexión. La evaluación del sistema demuestra cómo este diseño excede las principales capacidades de la realización original, a su vez el nuevo sistema proporciona una actuación versátil que podría conducir a su aplicación en múltiples articulaciones.

      Durante este trabajo una evaluación del exoesqueleto-adaptable se realizó caminando bajo ciertas restricciones mecánicas. Comparando el comportamiento de las articulaciones a diferentes condiciones de rigidez, la adaptabilidad inherente de los actuadores presentados mostró adaptabilidad natural durante el ciclo de la marcha, y regiones de absorción de choque. Se espera que el trabajo desarrollado en esta tesis doctoral continúe implementándose en aplicaciones de exoesqueletos y prótesis robóticas, a nivel de investigación y comercial. Varias publicaciones en revistas relevantes y conferencias internacionales han sido publicadas como consecuencia de la investigación llevada a cabo durante este trabajo de doctorado. Actualmente hay tres patentes producto de esta investigación, que están siendo explotados comercialmente por una PYME especializada en robótica para la salud. Los trabajos futuros se centrarán en la optimización del tamaño y peso de los sistemas de actuación adaptables, combinado con el desarrollo e implementación de estrategias de control adaptadas a los usuarios específicos y condiciones del entorno, con el objetivo de mejoras en la eficiencia energética y un andar más natural.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno