Ayuda
Ir al contenido

Dialnet


Unicidad de mejor o-aproximación mediante funciones n-convexas

  • Autores: Antonio Damas Serrano
  • Directores de la Tesis: Miguel A. Marayo Calzolari (dir. tes.)
  • Lectura: En la Universidad de Jaén ( España ) en 2001
  • Idioma: español
  • Tribunal Calificador de la Tesis: Rafael Payá Albert (presid.), José Juan Quesada Molina (secret.), Allan Pinkus (voc.), Hans Strauss (voc.), Juan Francisco Mema Jurado (voc.)
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • En esta memoria se da respuesta a un problema abierto clasico en teoria de mejor aproximación, a saber, la unicidad de mejor L1-aproximacion mediante funciones n-convexas, u2,3, Mas aun, se prueba la unicidad de mejor o-aproximacion n-convexa de una función continua en un intervalo abierto acotado, y donde la o-aproximacion es una medida de aproximacion que generaliza a la ---- L1. Además es de gran importancia el ejemplo 3.3.1, ya que con el se muestra la necesidad de la continuidad de la funcion f para poder probar con generalidad la unicidad de mejor L1-aproximacion, n-convexa de f para poder probar con generalidad la unicidad de mejor L1-aproximacion, n-convexa de f. Por otra parte se obtienen en la tesis resultados parciales que pueden ser consideradas igualmente de gran importancia. Asi, se concluyen interesantes propiedades para determinados espacios de ------ con modos fijos. En particular, se prueba la llamada propiedad A en los espacios infinito dimensionales Stt y Stto.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno