Ayuda
Ir al contenido

Dialnet


Genetic and genomic approaches to characterize crop varieties

  • Autores: Leticia Ayllón Egea
  • Directores de la Tesis: Gabriel Dorado Pérez (dir. tes.), Pilar Hernández Molina (codir. tes.)
  • Lectura: En la Universidad de Córdoba (ESP) ( España ) en 2018
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jesús V. Jorrin Novo (presid.), Francisco Cabello Hurtado (secret.), Amparo Monfort (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible por la Universidad de Córdoba y la Universidad de Sevilla
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: Helvia
  • Resumen
    • RESUMEN DE LA TESIS DOCTORAL DE D./Dª Leticia Ayllón Egea El resumen de la tesis para la base de datos Teseo debe ser una presentación de la tesis y tener la extensión suficiente para que quede explicado el argumento de la tesis doctoral. El formato debe facilitar la lectura y comprensión del texto a los usuarios que accedan a Teseo, debiendo diferenciarse las siguientes partes de la tesis:

      1. Introducción o motivación de la tesis Los bancos de germoplasma de plantas son reservorios de biodiversidad. Pueden albergar variedades en múltiples formas, como semillas, arboretos, sembrando cultivos estacionales y manteniendo cultivos in vitro. Los registros de los primeros bancos de germoplasma pertenecen a las sociedades egipcia y babilónica. Probablemente, Nikolaj Ivanovič Vavilov fue la primera persona que recalcó la necesidad de crear bancos de germoplasma para el bienestar de la sociedad. Tradicionalmente, las variedades eran almacenadas en función de las características morfológicas. Sin embargo, debido a la plasticidad fenotípica de las plantas, esta clasificación puede dar lugar a sinonimias y homonimias. Esta situación ha desencadenado la necesidad de caracterizar los bancos de germoplasma, no solo por criterios morfológicos, sino también mediante marcadores moleculares. Recientemente, estos últimos han mejorado significativamente. De este modo, han evolucionado desde métodos basados en péptidos a otros basados en ADN. Es más, estos últimos han mejorado enormemente gracias a la reacción en cadena de la polimerasa (“PCR”), incluyendo aproximaciones de alto rendimiento recientes. Esto ha sido posible gracias a la emergencia de tecnologías como las plataformas de secuenciación de segunda generación (“SGS”) y de tercera generación (“TGS”). Las aproximaciones utilizadas en la actualidad incluyen las repeticiones de secuencias únicas (“SSR”), los polimorfismos de nucleótidos únicos (“SNP”) y el genotipado por secuenciación (“GBS”). En resumen, la caracterización molecular permite una mejor identificación genética, comprensión de las funciones biológicas y búsqueda de relaciones para biología evolutiva. También son utilizadas en biología de la conservación de plantas, estudios de bioseguridad y gestión de bancos de germoplasma. Además, son herramientas excelentes para la mejora asistida, así como para la certificación de la propiedad intelectual y aplicaciones en trazabilidad.

      2.Contenido de la investigación En esta Tesis Doctoral, bancos de germoplasma de ajo y olivo han sido analizados mediante marcadores moleculares. Brevemente, el ajo ha sido tradicionalmente utilizado en todo el mundo como un ingrediente común en alimentación y como un remedio natural en farmacología y medicina. Esto es debido a sus interesantes atributos beneficiosos como, la reducción de la tensión alta, del colesterol y en la arterioesclerosis. El ajo también tiene efectos preventivos contra el cáncer y actividad antimicrobiana. Por otro lado, la importancia del olivo en innegable. Es uno de las especies más cultivadas en el mundo, especialmente en la cuenca mediterránea, y es la segunda especie más utilizada en la producción de aceite tras el aceite de palma. El área total de cultivo es diez millones de hectáreas. Sus innumerables propiedades culinarias y medicinales han impulsado su expansión a áreas que no tienen tradición productora ni consumidora. El principal objetivo de la caracterización del banco de germoplasma de ajo era estudiar la diversidad y estructura genética de 417 muestras del principal bando de germoplasma de ajo localizado en el Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA) de la Junta de Andalucía, de la Universidad de Córdoba y del Centro de Ensayos de Evaluación de Variedades, localizado en el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) en Madrid. La técnica elegida fue DArTseq (tecnología de matriz de diversidad), la cual permite la caracterización en especies sin genoma de referencia u otra información genética previa. De este modo, una colección nuclear fue creada para reducir el número original de entradas del banco, sin perder diversidad genética. Además, las secuencias polimórficas de ajo generadas en el análisis de DArTseq fueron usadas para determinar sus identidades, funciones, términos de Ontología Génica (“GO”) y rutas metabólicas mediante la búsqueda de identidades en otras bases de datos de plantas. Por otro lado, el objetivo principal del capítulo de olivo fue describir un método de “tubo cerrado” rentable para genotipar variedades cuando existe información genética disponible. En este caso, 83 muestras fueron analizadas usado seis marcadores moleculares y el análisis de alta resolución de fusión (“HRM”). Además, aunque el número de marcadores empleado fue bajo, los análisis de caracterización estaban en concordancia con trabajos previos.

      3.Conclusión Ambas técnicas de marcadores moleculares (DArTseq y HRM) mostraron resultados de genotipado consistentes en función de la información previa de los pasaportes de datos. El tamaño del banco de germoplasma de ajo fue significativamente reducido, lo que indica que en análisis DArTseq es una tecnología adecuada para el genotipado de alto rendimiento sin información genética previa disponible. Hasta nuestro conocimiento, este es el primer genotipado por secuenciación de alto rendimiento en ajo mediante la tecnología DArTseq. El genotipado mediante análisis de HRM en olivo demostró ser una metodología rentable para la caracterización de germoplasma y los estudios de genotipado. Los análisis realizados en estos capítulos pueden ayudar a clarificar los estudios genéticos y las aproximaciones para estudiar las adaptaciones para hacer frente a estreses bióticos y abióticos. Lo que es particularmente relevante en el contexto actual de cambio climático y calentamiento global.

      4. Bibliografía ADAMS, M.D., S.E. CELNIKER, R.A. HOLT, ET AL. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185–2195.

      AKPINAR, B., LUCAS, S., AND BUDAK, H. 2017. A large-scale chromosome-specific SNP discovery guideline. Functional & Integrative Genomics 17: 97–105.

      ALBA, R., Z. FEI, P. PAYTON, Y. LIU, S.L. MOORE, P. DEBBIE, J. COHN, M. D'ASCENZO, J. S. GORDON, J. K. C. ROSE, G. MARTIN, S. D. TANKSLEY, M. BOUZAYEN, M. M. JAHN, and J. GIOVANNONI. 2004. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. The Plant Journal: For Cell and Molecular Biology 39: 697–714.

      ALTSCHUL, S.F., W. GISH, W. MILLER, E.W. MYERS, and D.J. LIPMAN. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

      AL-ZAHIM, M., FORD-LLOYD, B., AND NEWBURY, H. (1999). Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Rep. 18: 473–477.

      ANGIOLILLO, A., M. MENCUCCINI, and L. BALDONI. 1999. Olive genetic diversity assessed using amplified fragment length polymorphisms. Theoretical and Applied Genetics 98: 411–421.

      ANKRI, S., and D. MIRELMAN. 1999. Antimicrobial properties of allicin from garlic. Microbes and Infection 1: 125–129.

      ARUMUGANATHAN, K., AND E.D. EARLE. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208–218.

      ATIENZA, S.G., R. DE LA ROSA, M.C. DOMÍNGUEZ-GARCÍA, A. MARTÍN, A. KILIAN, and A. BELAJ. 2013. Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Research International 54: 2045–2053.

      BAIROCH, A., and R. APWEILER. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28: 45–48.

      BALDONI, L., and A. BELAJ. 2009. Olive. In J. Vollmann, and I. Rajcan [eds.], Oil crops, Handbook of Plant Breeding, 397–421. Springer New York.

      BARTOLINI, G. 2008. Olive Germplasm (Olea europaea L.).

      BARTOLINI, G., R. PETRUCCELLI, and F. AND A.O. OF THE U. NATIONS. 2002. Classification, origin, diffusion and history of the Olive. Food and Agriculture Organization (FAO).

      BEAUCHAMP, G.K., R.S.J. KEAST, D. MOREL, J. LIN, J. PIKA, Q. HAN, C.-H. LEE, A. B. SMITH, and P. A. S. BRESLIN. 2005. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature 437: 45–46.

      BELAJ, A., M. DEL C. DOMINGUEZ-GARCÍA, S.G. ATIENZA, N.M. URDÍROZ, R.D. LA ROSA, Z. SATOVIC, A. MARTÍN, A. KILIAN, I. TRUJILLO, V. VALPUESTA, and C. DEL RÍO. 2012. Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genetics & Genomes 8: 365–378.

      BELLIN, D., A. FERRARINI, A. CHIMENTO, O. KAISER, N. LEVENKOVA, P. BOUFFARD, and M. DELLEDONNE. 2009. Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC Genomics 10: 555–563.

      BESNARD, G., P. BARADAT, and A. BERVILLÉ. 2001. Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theoretical and Applied Genetics 102: 251–258.

      BESNARD, G., R. RUBIO DE CASAS, P.-A. CHRISTIN, and P. VARGAS. 2009. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: Tertiary climatic shifts and lineage differentiation times. Annals of Botany 104: 143–160.

      BHASI, A., D. SENALIK, P.W. SIMON, B. KUMAR, V. MANIKANDAN, P. PHILIP, and P. SENAPATHY. 2010. RoBuST: an integrated genomics resource for the root and bulb crop families Apiaceae and Alliaceae. BMC Plant Biology 10: 161.

      BLANCA, G., B. CABEZUDO, M. CUETO, C. SALAZAR, and C. MORALES TORRES. 2011. Flora vascular de Andalucía Oriental. 2a edición. Universidades de Almería, Granada, Jaén y Málaga, Granada.

      BRACCI, T., M. BUSCONI, C. FOGHER, and L. SEBASTIANI. 2011. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Reports 30: 449–462.

      BUSCONI, M., L. SEBASTIANI, and C. FOGHER. 2006. Development of SCAR markers for germplasm characterisation in olive tree (Olea europea L.). Molecular Breeding 17: 59–68.

      BUSHAKRA, J.M., M.J. STEPHENS, A.N. ATMADJAJA, K.S. LEWERS, V.V. SYMONDS, J.A. UDALL, D. CHAGNÉ, E. J. BUCKS. and E. GARDINER. 2012. Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theoretical and Applied Genetics 125: 311–327.

      BUSO, G.S.C., M.R. PAIVA, A.C. TORRES, F.V. RESENDE, M.A. FERREIRA, J.A. BUSO, and A.N. DUSI. 2008. Genetic diversity studies of Brazilian garlic cultivars and quality control of garlic-clover production. Genetics and molecular research 7: 534–541.

      CABALLERO J.M., C. DEL RÍO, C. NAVARRO, M.D. GARCIA-FERNANDEZ, J. MORALES, M. HERMOSO, L.A. DEL OLMO, F. LOPEZ, F. CERA, G. RUIZ. 2005. Ensayos comparativos en Andalucía. In Rallo L, Barranco D, Caballero J, Martín A, Del Río C, Tous J, Trujillo I [eds]. Variedades de olivo en España, vol 2, MAPA. Ediciones Mundi- Prensa and COI, Sevilla, pp 383–394 CARDELLE-COBAS, A., SORIA, A. C., CORZO-MARTINEZ, M., AND VILLAMIEL, M. 2010. “A comprehensive survey of garlic functionality,” In Garlic Consumption and Health. M. Pacurar and G. Krejci [eds]: 1–60. Hauppauge: Nova Science Publishers, Inc.

      CARLSSON, K., and G. FRICK. 1964. Partial purification of nuclease from germinating garlic. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects 81: 301–310.

      CARUSO, M., G. DISTEFANO, D. PIETRO PAOLO, S. LA MALFA, G. RUSSO, A. GENTILE, and G.R. RECUPERO. 2014. High resolution melting analysis for early identification of citrus hybrids: A reliable tool to overcome the limitations of morphological markers and assist rootstock breeding. Scientia Horticulturae 180: 199–206.

      CHOLAKOVA, N. 2000. Application of esterase isozymes for garlic ecotype identification. Biologia Plantarum 43: 445–446.

      CONESA, A., S. GÖTZ, J.M. GARCÍA-GÓMEZ, J. TEROL, M. TALÓN, and M. ROBLES. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.

      CORZO-MARTÍNEZ, M., N. CORZO, and M. VILLAMIEL. 2007. Biological properties of onions and garlic. Trends in Food Science & Technology 18: 609–625.

      COURTOIS, B., A. AUDEBERT, A. DARDOU, S. ROQUES, T. GHNEIM-HERRERA, G. DROC, J. FROUIN, L. ROUAN, E. GOZÉ, A. KILIAN, N. AHMADI, and M. DINGKUHN. 2013. Genome-Wide Association mapping of root traits in a Japonica rice panel. PloS One 8: 11.

      CRONQUIST, A. 1981. An integrated system of classification of flowering plants. Columbia University Press.

      CRUZ, F., I. JULCA, J. GÓMEZ-GARRIDO, D. LOSKA, M. MARCET-HOUBEN, E. CANO, B. GALÁN, L. FRIAS, P. RIBECA, S. DERDAK, M. GUT, M. SÁNCHEZ-FERNÁNDEZ, J. L. GARCÍA, I. G. GUT, P. VARGAS, T. S. ALIOTO and T. GABALDÓN. 2016. Genome sequence of the olive tree, Olea europaea. GigaScience 5: 29.

      CRUZ, V.M.V., A. KILIAN, and D.A. DIERIG. 2013. Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop Lesquerella and related species. PloS One 8: 5.

      DA CUNHA, C.P., F.V. RESENDE, M.I. ZUCCHI, and J.B. PINHEIRO. 2014. SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica 142: 419–431.

      DAVEY, J.W., P.A. HOHENLOHE, P.D. ETTER, J.Q. BOONE, J.M. CATCHEN, and M.L. BLAXTER. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12: 499–510.

      DEFAYS, D. (1977). Efficient algorithm for a complete link method. Computational Journal. 20: 364–366.

      DIGHE, A.S., K. JANGID, J.M. GONZALEZ, V.J. PIDIYAR, M.S. PATOLE, D.R. RANADE, and Y.S. SHOUCHE. 2004. Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiology 4: 20.

      DISTEFANO, G., S. LA MALFA, S. CURRÒ, G. LAS CASAS, A. WÜNSCH, and A. GENTILE. 2015. HRM analysis of chloroplast and mitochondrial DNA revealed additional genetic variability in Prunus. Scientia Horticulturae 197: 124–129.

      DISTEFANO, G., S.L. MALFA, A. GENTILE, and S. B. WU. 2013. EST-SNP genotyping of citrus species using high-resolution melting curve analysis. Tree Genetics & Genomes 9: 1271–1281.

      DOMÍNGUEZ-GARCÍA, M.C., A. BELAJ, R. DE LA ROSA, Z. SATOVIC, K. HELLER-USZYNSKA, A. KILIAN, A. MARTÍN, and S.G. ATIENZA. 2012. Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Scientia Horticulturae 136: 50–60.

      DORADO, G., G. BESNARD, T. UNVER, and P. HERNÁNDEZ. 2015. Polymerase Chain Reaction (PCR), In Caplan M [ed]. Reference Module in Biomedical Sciences. Biochemistry, Cell Biology and Molecular Biology. Elsevier Amsterdam.

      DORADO, G., S. GÁLVEZ, H. BUDAK, T. UNVER, and P. HERNÁNDEZ. 2015. Nucleic-acid sequencing. In Caplan M [ed]. Reference Module in Biomedical Sciences. Biochemistry, Cell Biology and Molecular Biology. Elsevier Amsterdam.

      DORADO, G., T. UNVER, H. BUDAK, and P. HERNÁNDEZ. 2015. Molecular markers. In Caplan M [ed]. Reference Module in Biomedical Sciences. Biochemistry, Cell Biology and Molecular Biology. Elsevier Amsterdam.

      ELSHIRE, R.J., J.C. GLAUBITZ, Q. SUN, J.A. POLAND, K. KAWAMOTO, E.S. BUCKLER, and S.E. MITCHELL. 2011. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PloS One 6: 5.

      FABBRI, A., M. LAMBARDI, and Y. OZDEN-TOKATLI. 2009. Olive breeding. In S. M. Jain, and P. M. Priyadarshan [eds.], Breeding plantation tree crops: Tropical species, 423–465. Springer New York.

      FAO. 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome.

      FELSENSTEIN. 1989. PHYLIP - phylogeny Inference Package. Cladistics 1989, 5: 164-166 FERNÁNDEZ ESCOBAR, R., and L. RALLO ROMERO. 2008. Variedades y patrones. In E-libro, Corp [eds.] El cultivo del olivo, 37–62. Mundi-Prensa, Madrid.

      GANOPOULOS, I., A. ARGIRIOU, and A. TSAFTARIS. 2011. Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22: 532–541.

      GARAVITO, A., C. MONTAGNON, R. GUYOT, and B. BERTRAND. 2016. Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biology 16: 242.

      GEBHARDT, C. 2013. Bridging the gap between genome analysis and precision breeding in potato. Trends in genetics: 29: 248–256.

      GOMES, S., P. MARTINS-LOPES, J. LIMA-BRITO, J. MEIRINHOS, J. LOPES, A. MARTINS, and H. GUEDES-PINTO. 2008. Evidence for clonal variation in “Verdeal-Transmontana” olive using RAPD, ISSR and SSR markers. The Journal of Horticultural Science and Biotechnology 83: 395–400.

      GOVINDARAJ, M., M. VETRIVENTHAN, and M. SRINIVASAN. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international 2015: 431487–431487.

      GOWER, J.C. 1971. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27: 857–871.

      GREEN, E. 2001. Strategies for the systematic sequencing of complex genomes. Nature Reviews Genetics 2: 573–583.

      GREEN, P.S. 2002. A Revision of Olea L. (Oleaceae). Kew Bulletin 57: 91–140.

      GUPTA, P.K., S. RUSTGI, and R.R. MIR. 2008. Array-based high-throughput DNA markers for crop improvement. Heredity 101: 5–18.

      HARLAN, J. 1992. Crops and man. American Society of Agronomy, Madison, Wisconsin, USA.

      HARRIS, M.A., J. CLARK, A. IRELAND, ET AL. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32: D258-261.

      HENRY, R.J. 2012. Evolution of DNA marker technology in plants. In R. J. Henry [ed.], Molecular markers in plants, 1–19. Blackwell Publishing Ltd.

      HERNANDEZ, P., R. DE LA ROSA, L. RALLO, A. MARTIN, and G. DORADO. 2001. First evidence of a retrotransposon-like element in olive (Olea europaea): implications in plant variety identification by SCAR-marker development. Theoretical and Applied Genetics 102: 1082–1087.

      HORAN, K., C. JANG, J. BAILEY-SERRES, R. MITTLER, C. SHELTON, J.F. HARPER, J.-K. ZHU, J. C. CUSHMAN, M. GOLLERY, and T. GIRKE. 2008. Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiology 147: 41–57.

      HORNETT, E.A., and C.W. WHEAT. 2012. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics 13: 361.

      HYLAND, H.L. 1977. History of U.S. Plant introduction. Environmental History Review 2: 26–32.

      IPEK, A. K. YILMAZ, P. SIKICI, N. TANGU, A. O, M. BAYRAKTAR, M. İPEK, and H. GÜLEN. 2016. SNP discovery by GBS in olive and the construction of a high-density genetic linakges map. Biochemical Genetics 54: 313–325.

      IPEK, M., A. IPEK, S. ALMQUIST, and P. SIMON. 2005. Demonstration of linkage and development of the first low-density gene. Theoretical and Applied Genetics 110: 228–236.

      IPEK, M., N. SAHIN, A. IPEK, A. CANSEV, and P. SIMON. 2015. Development and validation of new SSR markers from expressed regions in the garlic genome. Scientia Agricola 72: 41–46.

      JACCOUD, D., K. PENG, D. FEINSTEIN, and A. KILIAN. 2001. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29: E25.

      JANSKY, S.H., J. DAWSON, and D.M. SPOONER. 2015. How do we address the disconnect between genetic and morphological diversity in germplasm collections? American Journal of Botany 102: 1213–1215.

      JONES, M.G., J. HUGHES, A. TREGOVA, J. MILNE, A.B. TOMSETT, and H.A. COLLIN. 2004. Biosynthesis of the flavour precursors of onion and garlic. Journal of Experimental Botany 55: 1903–1918.

      KAMENETSKY, R., A. FAIGENBOIM, E. MAYER, T. BEN MICHAEL, C. GERSHBERG, S. KIMHI, I. ESQUIRA, S. R. SHALOM, D. ESHEL, H. D. RABINOWITCH and A. SHERMAN. 2015. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 16:12.

      KAMENETSKY, R., I.L. SHAFIR, M. BAIZERMAN, F. KHASSANOV, C. KIK, and H. D. RABINOWITCH. 2004. Garlic (Allium sativum L.) and its wild relatives from Central Asia: evaluation for fertility potential. Advanced Vegetable Breeding: 83–91.

      KILIAN, A., P. WENZL, E. HUTTNER, J. CARLING, L. XIA, H. BLOIS, V. CAIG, K. HELLER-USZYNSKA, D. JACCOUD, C. HOPPER, M. ASCHENBRENNER-KILIAN, M. EVERS, K. PENG, C. CAYLA, P. HOK, G. USZYNSKI. 2012. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods in molecular biology (Clifton, N.J.) 888: 67–89.

      KIM, A., R. KIM, D. KIM, S. CHOI, A. KANG, S. NAM, and H. PARK. 2010. Identification of a novel garlic cellulase gene. In Plant molecular biology reporter, 388–93.

      KIM, D.-W., T.-S. JUNG, S.-H. NAM, H.-R. KWON, A. KIM, S.-H. CHAE, S.-H. CHOI, D-W. KIM, R. N. KIM, and H-S. PARK. 2009. GarlicESTdb: an online database and mining tool for garlic EST sequences. BMC Plant Biology 9: 61.

      KUMAR, S., G. STECHER, and K. TAMURA. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

      LAMPASONA, S.G., L. MARTÍNEZ, and J.L. BURBA. 2003. Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132: 115–119.

      LANZOTTI, V. 2006. The analysis of onion and garlic. Journal of Chromatography. A 1112: 3–22.

      LAS CASAS, G., F. SCOLLO, G. DISTEFANO, A. CONTINELLA, A. GENTILE, and S. LA MALFA. 2014. Molecular characterization of olive (Olea europaea L.) Sicilian cultivars using SSR markers. Biochemical Systematics and Ecology 57: 15–19.

      LIU, J., J. WANG, M. YIN, H. ZHU, J. LU, and Z. CUI. 2011. Purification and characterization of superoxide dismutase from garlic. Food and Bioproducts Processing 89: 294–299.

      LIU, K., and S.V. MUSE. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics (Oxford, England) 21: 2128–2129.

      MA, K.-H., J.-G. KWAG, W. ZHAO, A. DIXIT, G.-A. LEE, H.-H. KIM, I.-M. CHUNG, N-S KIM, J-S. LEE, J-J. JI, T-S. KIM, and Y-J. PARK. 2009. Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Scientia Horticulturae 122: 355–361.

      MAAß, H.I., and M. KLAAS. 1995. Infraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theoretical and applied genetics. Theoretische und angewandte Genetik 91: 89–97.

      MACKAY, J.F., C.D. WRIGHT, and R.G. BONFIGLIOLI. 2008. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4: 8.

      MARIOTTI, R., N.G.M. CULTRERA, S. MOUSAVI, F. BAGLIVO, M. ROSSI, E. ALBERTINI, F. ALAGNA, F. CARBONE, G. PERROTTA, and L. BALDONI. 2016. Development, evaluation, and validation of new EST-SSR markers in olive (Olea europaea L.). Tree Genetics & Genomes 12: 120.

      MEREDITH, T. 2008. The Complete Book of Garlic: A Guide for Gardeners, Growers, and Serious Cooks. Portland: Timber Press.

      MI, H., A. MURUGANUJAN, J.T. CASAGRANDE, and P.D. THOMAS. 2013. Large-scale gene function analysis with the PANTHER classification system. Nature Protocols 8: 1551–1566.

      MINISTERIO DE AGRICULTURA Y PESCA, ALIMENTACIÓN Y MEDIO AMBIENTE. 2015. Encuesta sobre Superficies y Rendimientos Cultivos (ESYRCE). Available at: http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/# [Accessed February 11, 2017].

      MOHAMMADI, S., and B. PRASANNA. 2003. Analysis of Genetic Diversity in Crop Plants—Salient Statistical Tools and Considerations. Crop Science Society of America 43: 1235–1248.

      MOHAN, M., S. NAIR, A. BHAGWAT, T.G. KRISHNA, M. YANO, C.R. BHATIA, and T. SASAKI. 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding 3: 87–103.

      MONTEMURRO, C., M.M. MIAZZI, A. PASQUALONE, V. FANELLI, W. SABETTA, and V. DI RIENZO. 2015. Traceability of PDO olive oil “Terra di Bari” using high resolution melting. Journal of Chemistry 2015: e496986.

      MUKHERJEE, D., and S. BANERJEE. 2013. Learning and memory promoting effects of crude garlic extract. Indian Journal of Experimental Biology 51: 1094–1100.

      MULEO, R., M.C. COLAO, D. MIANO, M. CIRILLI, M.C. INTRIERI, L. BALDONI, and E. RUGINI. 2009. Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52: 252–260.

      MUÑOZ-MÉRIDA, A., J.J. GONZÁLEZ-PLAZA, A. CAÑADA, A.M. BLANCO, M. DEL C. GARCÍA-LÓPEZ, J.M. RODRÍGUEZ, L. PEDROLA, M. D. SICARDO, M. L. HERNÁNDEZ, R. DE LA ROSA, A. BELAJ, M. GIL-BORJA, F. LUQUE, J. M. MARTÍNEZ-RIVAS, D. G. PISANO, O. TRELLES, V. VALPUESTA, and C. R. BEUZÓN. 2013. De novo assembly and functional annotation of the Olive (Olea europaea) transcriptome. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 20: 93–108.

      MURRAY, M.G., and W.F. THOMPSON. 1980. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Research 8: 4321–4325.

      NATIONAL RESEARCH COUNCIL STAFF. 1990. U.S. National Plant Germplasm System. National Academies Press, Washington, US. Available at: http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10056767 [Accessed April 5, 2017].

      NEI, M., F. TAJIMA, and Y. TATENO. 1983. Accuracy of estimated phylogenetic trees from molecular-data .2. Gene-frequency data. Journal of Molecular Evolution 19: 153–170.

      NYBOM, H., and I. BARTISH. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 93–114.

      OLUKOLU, B.A., S. MAYES, F. STADLER, N.Q. NG, I. FAWOLE, D. DOMINIQUE, S.N. AZAM-ALI, A. G. ABBOTT, and C. KOLE. 2012. Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genetic Resources and Crop Evolution 59: 347–358.

      OVESNA, J., K. MITROVA, and L. KUCERA. 2015. Garlic (A. sativum L.) alliinase gene family polymorphism reflects bolting types and cysteine sulphoxides content. BMC Genetics 16:53.

      OVESNÁ, J., L. LEIŠOVÁ-SVOBODOVÁ, and L. KUČERA. 2014. Microsatellite analysis indicates the specific genetic basis of Czech bolting garlic. Czech Journal of Genetics and Plant Breeding 50: 226–234.

      PACURAR, M., and G. KREJCI [eds]. 2010. Garlic Consumption and Health. New York, NY: Nova Science Publishers.

      PARISI, M.G., S. MORENO, and G. FERNÁNDEZ. 2008. Isolation and characterization of a dual function protein from Allium sativum bulbs which exhibits proteolytic and hemagglutinating activities. Plant physiology and biochemistry: PPB 46: 403–413.

      PARK, J.B. 2009. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum). Journal of Agricultural and Food Chemistry 57: 8868–8872.

      PASQUALONE, A., V. DI RIENZO, W. SABETTA, V. FANELLI, C. SUMMO, V.M. PARADISO, C. MONTEMURRO, and F. CAPONIO. 2016. Chemical and molecular characterization of crude oil obtained by olive-pomace recentrifugation. Journal of Chemistry 2016: e4347207.

      PASQUALONE, A., V.D. RIENZO, M.M. MIAZZI, V. FANELLI, F. CAPONIO, and C. MONTEMURRO. 2015. High resolution melting analysis of DNA microsatellites in olive pastes and virgin olive oils obtained by talc addition. European Journal of Lipid Science and Technology 117: 2044–2048.

      PÉREZ-JIMÉNEZ, F., J. RUANO, P. PEREZ-MARTINEZ, F. LOPEZ-SEGURA, and J. LOPEZ-MIRANDA. 2007. The influence of olive oil on human health: not a question of fat alone. Molecular Nutrition & Food Research 51: 1199–1208.

      PITTLER, M.H., and E. ERNST. 2007. Clinical effectiveness of garlic (Allium sativum). Molecular Nutrition & Food Research 51: 1382–1385.

      PRITCHARD, J.K., M. STEPHENS, and P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

      R CORE TEAM. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.

      RAMAN, H., R. RAMAN, A. KILIAN, F. DETERING, J. CARLING, N. COOMBES, S. DIFFEY, G.P. KADKOL, D.J. EDWARDS, M. MCCULLY, P. RUPERAO, I.A.P. PARKIN, J. BATLEY, D.J. LUCKETT, and N. WRATTEN. 2014. Genome-Wide delineation of natural variation for pod shatter resistance in Brassica napus. PloS One 9: 7.

      RANA, S., R. PAL, K. VAIPHEI, S. SHARMA, and R. OLA. 2011. Garlic in health and disease. Nutrition Research Reviews 24: 60–71.

      RATHNASAMY, S., L. R. AUXILIA, and PURUSOTHAMAN. 2014. Comparative studies on isolation and characterization of allinase from garlic and onion using PEGylation-a novel method. Asian Journal oof Chemistry 26: 3733–3735.

      RODRIGUES, F., F. B. PIMENTEL, and MBPP. OLIVEIRA. 2015. Olive by-products: Challenge application in cosmetic industry. Industrial Crops and Products 70: 116–124.

      ROTEM, N., E. SHEMESH, Y. PERETZ, F. AKAD, O. EDELBAUM, H. RABINOWITCH, I. SELA, and R. KAMENETSKY. 2007. Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. Journal of Experimental Botany 58: 1133–1141.

      SACHS, M.M. 2009. Cereal germplasm resources. Plant Physiology 149: 148–151.

      SCHATZ, M.C., J. WITKOWSKI, and W.R. MCCOMBIE. 2012. Current challenges in de novo plant genome sequencing and assembly. Genome Biology 13: 243.

      SERVILI, M., B. SORDINI, S. ESPOSTO, S. URBANI, G. VENEZIANI, I. DI MAIO, R. SELVAGGINI, and A. TATICCHI. 2013. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil. Antioxidants 3: 1–23.

      SHEMESH-MAYER, E., K. WINIARCZYK, L. BŁASZCZYK, A. KOSMALA, H.D. RABINOWITCH, and R. KAMENETSKY. 2013. Male gametogenesis and sterility in garlic (Allium sativum L.): barriers on the way to fertilization and seed production. Planta 237: 103–120.

      SHEMESH-MAYER, E., T. BEN-MICHAEL, N. ROTEM, H.D. RABINOWITCH, A. DORON-FAIGENBOIM, A. KOSMALA, D. PERLIKOWSKI, A. SHERMAN, and R. KAMENETSKY. 2015. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. Frontiers in Plant Science 6: 271.

      SIMKO, I. 2016. High-resolution DNA melting analysis in plant research. Trends in Plant Science 21: 528–537.

      SIMKO, I., I. EUJAYL, and T.J.L. VAN HINTUM. 2012. Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Science 184: 54–62.

      SMEETS, K., E.J.M.V. DAMME, P. VERHAERT, A. BARRE, P. ROUGÉ, F.V. LEUVEN, and W.J. PEUMANS. 1997. Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Molecular Biology 33: 223–234.

      SUETSUNA, K. 1998. Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic). Journal of Nutritional Biochemistry 9: 415–419.

      SUPEK, F., M. BOŠNJAK, N. ŠKUNCA, and T. ŠMUC. 2011. REVIGO Summarizes and visualizes long lists of gene ontology terms. PloS One 6: e21800.

      SUZUKI, R., and H. SHIMODAIRA. 2015. pvclust: Hierarchical clustering with p-values via multiscale bootstrap resampling. Available at: http://CRAN.R-project.org/package=pvclust.

      TANKSLEY, S.D., and S.R. MCCOUCH. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

      TCHÓRZEWSKA, D., K. DERYŁO, L. BŁASZCZYK, and K. WINIARCZYK. 2015. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum L. and fertile Allium ampeloprasum L. Plant Reproduction 28: 171–182.

      THE UNIPROT CONSORTIUM. 2016. UniProt: the universal protein knowledgebase. Nucleic Acids Research 45: D158–D169.

      TRUJILLO, I., M.A. OJEDA, N.M. URDIROZ, D. POTTER, D. BARRANCO, L. RALLO, and C.M. DIEZ. 2014. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genetics & Genomes 10: 141–155.

      VARSHNEY, R.K., R. TERAUCHI, and S.R. MCCOUCH. 2014. Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biology 12: e1001883.

      VIETINA, M., C. AGRIMONTI, and N. MARMIROLI. 2013. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration. Food Chemistry 141: 3820–3826.

      VOLK, G.M., A.D. HENK, and C.M. RICHARDS. 2004. Genetic diversity among U.S. garlic clones as detected using AFLP methods. Journal of the American Society for Horticultural Science 129: 559–569.

      WANG, H., X. LI, X. LIU, Y. OIU, J. SONG, and X. ZHANG. 2016. Genetic diversity of garlic (Allium sativum L.) germplasm from China by fluorescent-based AFLP, SSR and InDel markers. Plant Breeding 135: 743–750.

      WINIARCZYK, K., and A. KOSMALA. 2009. Development of the female gametophyte in the sterile ecotype of the bolting Allium sativum L. Scientia Horticulturae 121: 353–360.

      XANTHOPOULOU, A., I. GANOPOULOS, G. KOUBOURIS, A. TSAFTARIS, C. SERGENDANI, A. KALIVAS, and P. MADESIS. 2014. Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genetic Resources 12: 273–277.

      XIANJUN, P., T. LINHONG, W. XIAOMAN, W. YUCHENG, and S. SHIHUA. 2014. De novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera). PloS One 9: e97487.

      ZHAO, W., J. CHUNG, G. LEE, K. MA, H. KIM, K. KIM, I. CHUNG, J. K. LEE, N. S. KIM, S. M. KIM, and Y. J. PARK. 2010. Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breeding 130: 46–54.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno