La presente tesis aborda el diseño inteligente de soluciones para el despliegue de redes vehiculares ad-hoc (vehicular ad hoc networks, VANETs). Estas son redes de comunicación inalámbrica formada principalmente por vehículos y elementos de infraestructura vial. Las VANETs ofrecen la oportunidad para desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y eficiencia vial. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el diseño de la infraestructura de estaciones base necesaria y el encaminamiento (routing) y difusión (broadcasting) de paquetes de datos, que todavía no han podido resolverse empleando estrategias clásicas. Es por tanto necesario crear y estudiar nuevas técnicas que permitan de forma eficiente, eficaz, robusta y flexible resolver dichos problemas.
Este trabajo de tesis doctoral propone el uso de computación inspirada en la naturaleza o Computación Natural (CN) para tratar algunos de los problemas más importantes en el ámbito de las VANETs, porque representan una serie de algoritmos versátiles, flexibles y eficientes para resolver problemas complejos. Además de resolver los problemas VANET en los que nos enfocamos, se han realizado avances en el uso de estas técnicas para que traten estos problemas de forma más eficiente y eficaz. Por último, se han llevado a cabo pruebas reales de concepto empleando vehículos y dispositivos de comunicación reales en la ciudad de Málaga (España).
La tesis se ha estructurado en cuatro grandes fases. En la primera fase, se han estudiado los principales fundamentos en los que se basa esta tesis. Para ello se hizo un estudio exhaustivo sobre las tecnologías que emplean las redes vehiculares, para así, identificar sus principales debilidades. A su vez, se ha profundizado en el análisis de la CN como herramienta eficiente para resolver problemas de optimización complejos, y de cómo utilizarla en la resolución de los problemas en VANETs. En la segunda fase, se han abordado cuatro problemas de optimización en redes vehiculares: la transferencia de archivos, el encaminamiento (routing) de paquetes, la difusión (broadcasting) de mensajes y el diseño de la infraestructura de estaciones base necesaria para desplegar redes vehiculares. Para la resolución de dichos problemas se han propuesto diferentes algoritmos CN que se clasifican en algoritmos evolutivos (evolutionary algorithms, EAs), métodos de inteligencia de enjambre (swarm intelligence, SI) y enfriamiento simulado (simulated annealing, SA). Los resultados obtenidos han proporcionado protocolos de han mejorado de forma significativa las comunicaciones en VANETs. En la tercera y última fase, se han realizado experimentos empleando vehículos reales circulando por las carreteras de Málaga y que se comunicaban entre sí. El principal objetivo de estas pruebas ha sido el validar las mejoras que presentan los protocolos que se han optimizado empleando CN. Los resultados obtenidos de las fases segunda y tercera confirman la hipótesis de trabajo, que la CN es una herramienta eficiente para tratar el diseño inteligente en redes vehiculares.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados