Ayuda
Ir al contenido

Dialnet


Texture analysis and physical interpretation of polarimetric SAR data

  • Autores: Xinping Deng
  • Directores de la Tesis: Carlos López Martínez (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2016
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Luis Álvarez Pérez (presid.), Adriano José Camps Carmona (secret.), Eduardo Makhoul Varona (voc.)
  • Materias:
  • Enlaces
  • Resumen
    • Esta tesis está dedicada al estudio del análisis de texturas y de la interpretación física de datos PolSAR. Como punto de partida, se ha llevado a cabo un estudio completo de los modelos estadísticos para datos PolSAR. Todos los modelos se han clasificado en tres categorías: distribuciónes gaussianas, modelos de textura y modelos de mezcla finita. Los modelos de textura, que asumen que la aleatoriedad de los datos SAR se debe a dos factores no relacionados, la textura y el speckle, son el tema principal de este estudio. Las distribuciones del vector de dispersión y de la matriz de covarianza en diferentes modelos son revisados. Debido a que se han propuesto muchos modelos, cómo elegir el más preciso para unos datos en particular es un gran reto. Los métodos que analizan diferentes canales polarimétricos por separado o requieren de un filtrado de los datos presentan limitacions en muchos casos, especialmente cuando se trata de datos de alta resolución. En esta tesis, la norma L2 de los vectores de dispersión se estudian, demostrando su utilidad para extraer información estadística de los datos PolSAR. Las estadísticas basadas en la norma L2 se pueden utilizar para determinar la distribución de los datos.

      En la literatura, se sugieren una serie de modelos para modelar la textura de los datos PolSAR, siendo alguno de ellos muy complejos. Sin embargo, la mayoría de ellos carecen de una explicación física. El modelo de random walk, que se puede interpretar como un análogo discreto del proceso de enfocado de los datos SAR, se estudia con el objetivo de comprender las estadísticas de los datos desde el punto de vista de proceso de dispersión. Se desarrolla un simulador basado en el modelo de random walk, donde se consideran diversas variaciones en los tipos de dispersores y número de dispersores. Se construye un puente entre los modelos matemáticos y mecanismos físicos subyacentes.

      Se encontró que tanto la mezcla como la textura podrían dar las mismas estadísticas, tales como log-cumulantes de segundo orden y tercer orden. Los dos conceptos, la textura y la mezcla, representan dos escenarios muy diferentes. Se realizó un estudio adicional para ver si es posible distinguirlos, demostrando que las estadísticas de orden superior son favorables en esta tarea.

      Pueden interpretarse físicamente para distinguir la dispersión a partir de un solo tipo de blanco de una mezcla de blancos.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno