Ayuda
Ir al contenido

Dialnet


Resumen de Robot Visual Servoing Using Discontinuous Control

Pau Muñoz Benavent

  • This work presents different proposals to deal with common problems in robot visual servoing based on the application of discontinuous control methods. The feasibility and effectiveness of the proposed approaches are substantiated by simulation results and real experiments using a 6R industrial manipulator. The main contributions are:

    - Geometric invariance using sliding mode control (Chapter 3): the defined higher-order invariance is used by the proposed approaches to tackle problems in visual servoing. Proofs of invariance condition are presented.

    - Fulfillment of constraints in visual servoing (Chapter 4): the proposal uses sliding mode methods to satisfy mechanical and visual constraints in visual servoing, while a secondary task is considered to properly track the target object. The main advantages of the proposed approach are: low computational cost, robustness and fully utilization of the allowed space for the constraints.

    - Robust auto tool change for industrial robots using visual servoing (Chapter 4): visual servoing and the proposed method for constraints fulfillment are applied to an automated solution for tool changing in industrial robots. The robustness of the proposed method is due to the control law of the visual servoing, which uses the information acquired by the vision system to close a feedback control loop. Furthermore, sliding mode control is simultaneously used in a prioritized level to satisfy the aforementioned constraints. Thus, the global control accurately places the tool in the warehouse, but satisfying the robot constraints.

    - Sliding mode controller for reference tracking (Chapter 5): an approach based on sliding mode control is proposed for reference tracking in robot visual servoing using industrial robot manipulators. The novelty of the proposal is the introduction of a sliding mode controller that uses a high-order discontinuous control signal, i.e., joint accelerations or joint jerks, in order to obtain a smoother behavior and ensure the robot system stability, which is demonstrated with a theoretical proof.

    - PWM and PFM for visual servoing in fully decoupled approaches (Chapter 6): discontinuous control based on pulse width and pulse frequency modulation is proposed for fully decoupled position based visual servoing approaches, in order to get the same convergence time for camera translation and rotation.

    Moreover, other results obtained in visual servoing applications are also described.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus