Ayuda
Ir al contenido

Dialnet


Resumen de Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR

Carles Mesado Melia

  • This PhD study, developed at Universitat Politècnica de València (UPV), aims to cover the first phase of the benchmark released by the expert group on Uncertainty Analysis in Modeling (UAM-LWR). The main contribution to the benchmark, made by the thesis' author, is the development of a MATLAB program requested by the benchmark organizers. This is used to generate neutronic libraries to distribute among the benchmark participants. The UAM benchmark pretends to determine the uncertainty introduced by coupled multi-physics and multi-scale LWR analysis codes.

    The benchmark is subdivided into three phases:

    1. Neutronic phase: obtain collapsed and homogenized problem-dependent cross sections and criticality analyses.

    2. Core phase: standalone thermohydraulic and neutronic codes.

    3. System phase: coupled thermohydraulic and neutronic code.

    In this thesis the objectives of the first phase are covered. Specifically, a methodology is developed to propagate the uncertainty of cross sections and other neutronic parameters through a lattice physics code and core simulator. An Uncertainty and Sensitivity (U&S) analysis is performed over the cross sections contained in the ENDF/B-VII nuclear library. Their uncertainty is propagated through the lattice physics code SCALE6.2.1, including the collapse and homogenization phase, up to the generation of problem-dependent neutronic libraries. Afterward, the uncertainty contained in these libraries can be further propagated through a core simulator, in this study PARCSv3.2. The module SAMPLER -available in the latest release of SCALE- and DAKOTA 6.3 statistical tool are used for the U&S analysis. As a part of this process, a methodology to obtain neutronic libraries in NEMTAB format -to be used in a core simulator- is also developed. A code-to-code comparison with CASMO-4 is used as a verification. The whole methodology is tested using a Boiling Water Reactor (BWR) reactor type. Nevertheless, there is not any concern or limitation regarding its use in any other type of nuclear reactor.

    The Gesellschaft für Anlagen und Reaktorsicherheit (GRS) stochastic methodology for uncertainty quantification is used. This methodology makes use of the high-fidelity model and nonparametric sampling to propagate the uncertainty. As a result, the number of samples (determined using the revised Wilks' formula) does not depend on the number of input parameters but only on the desired confidence and uncertainty of output parameters. Moreover, the output Probability Distribution Functions (PDFs) are not subject to normality. The main disadvantage is that each input parameter must have a pre-defined PDF. If possible, input PDFs are defined using information found in the related literature. Otherwise, the uncertainty definition is based on expert judgment.

    A second scenario is used to propagate the uncertainty of different thermohydraulic parameters through the coupled code TRACE5.0p3/PARCSv3.0. In this case, a PWR reactor type is used and a transient control rod drop occurrence is simulated. As a new feature, the core is modeled chan-by-chan following a fully 3D discretization. No other study is found using a detailed 3D core. This U&S analysis also makes use of the GRS methodology and DAKOTA 6.3.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus