Los elementos ópticos difractivos han ganado importancia en las últimas décadas debido al avance de la tecnología que permite su construcción y al aumento de la potencia de cálculo computacional que permite predecir, con un coste mínimo, su comportamiento en función de los múltiples parámetros que definen su estructura. La periodicidad constituye un factor clave a la hora de entender su funcionamiento y estudiar las propiedades y aplicabilidad de los diferentes tipos de elementos difractivos. Ahora bien, esta periodicidad también introduce ciertas limitaciones en el diseño de los elementos y en sus propiedades, como por ejemplo una alta aberración cromática al ser utilizados como elementos formadores de imagen. Para superar estas limitaciones se propuso la aplicación de secuencias aperiódicas deterministas al diseño de los elementos ópticos difractivos. En este trabajo de Tesis se han estudiado diferentes secuencias aperiódicas y sus efectos en el diseño de nuevas estructuras difractivas. En particular, se ha utilizado la secuencia fractal de Cantor, la serie de Fibonacci y la serie de Thue--Morse en el diseño de dispositivos difractivos con diferentes finalidades.
A lo largo del desarrollo del trabajo de Tesis se han generado nuevos elementos difractivos que superan ciertas limitaciones, abriendo nuevos campos de aplicación a tecnologías preexistentes. Entre ellos, podemos destacar los sistemas de alineación óptica, la generación de vórtices ópticos, la reducción de la aberración cromática y el aumento de la profundidad de foco en elementos formadores de imagen.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados