Ayuda
Ir al contenido

Dialnet


Estudio de librerías paralelas de libre distribución y algoritmos paralelos iterativos multipaso para la resolución de sistemas de ecuaciones lineales dispersos. Aplicación a la ecuación de difusión neutrónica

  • Autores: Omar Flores Sánchez
  • Directores de la Tesis: Vicente Emilio Vidal Gimeno (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2009
  • Idioma: español
  • Tribunal Calificador de la Tesis: Antonio M. Vidal Maciá (presid.), Joaquín Navarro Esbrí (secret.), Violeta Migallón Gomis (voc.), Leroy Anthony Drummond Lewis (voc.), José Penadés Martínez (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TESEO
  • Resumen
    • En esta tesis se abordan dos problemas fundamentales relacionados con los estudios de estabilidad y seguridad de reactores nucleares, donde es necesario resolver eficientemente sistemas de ecuaciones lineales dispersos de gran dimensi'on, El primero de ellos est'a relacionado con el problema de los modos Lambda de la ecuaci'on de difusi'on neutr'onica aplicada a un caso de estudio (reactor Ringhals I, tipo agua en ebullici'on o BWR), que constituye un problema de valores propios generalizado. El segundo problema est'a relacionado con la resoluci'on de un sistema de ecuaciones lineales disperso de gran dimensi'on que surge de la discretizaci'on temporal de la ecuaci'on de difusi'on neutr'onica aplicada a otro caso de estudio (reactor Leibstadt, tipo BWR) y que debe resolverse en distintos pasos de tiempo. Para la resoluci'on de los sistemas de ecuaciones lineales dispersos de gran dimensi'on asociados al problema de los modos Lambda, en esta tesis se ha realizado un estudio num'erico del comportamiento secuencial y paralelo de algunos de los m'etodos que resuelven este tipo de problemas, tales como: m'etodos directos, m'etodos iterativos y m'etodos basados en subespacios de Krylov. Para realizar el estudio se han utilizando librer'yas de libre distribuci'on, tanto secuenciales como paralelas. Con los resultados obtenidos, se han identificado aquellos m'etodos y librer'yas que resuelven m'as eficientemente los sistemas lineales para el caso de estudio seleccionado. Para la resoluci'on de los sistemas de ecuaciones lineales dispersos del caso din'amico, en esta tesis se han propuesto m'etodos iterativos multipaso para la aceleraci'on de su resoluci'on, los cuales tambi'en se han implementado secuencial y paralelamente utilizando librer'yas de libre distribuci'on. En la experimentaci'on de estos m'etodos iterativos multipaso propuestos se ha podido comprobar que se ha alcanzado una aceleraci'on considerable y que pueden ser una opci'on apropiada para llevar a cabo simul


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno