Ayuda
Ir al contenido

Dialnet


Resumen de Consensus and analia: new challenges in detection and management of security vulnerabilities in data networks

Guiomar Corral Torruella

  • A medida que las redes pasan a ser un elemento integral de las corporaciones, las tecnologías de seguridad de red se desarrollan para proteger datos y preservar la privacidad, El test de seguridad en una red permite identificar vulnerabilidades y asegurar los requisitos de seguridad de cualquier empresa. El análisis de la seguridad permite reconocer información maliciosa, tráfico no autorizado, vulnerabilidades de dispositivos o de la red, patrones de intrusión, y extraer conclusiones de la información recopilada en el test. Entonces, ¿dónde está el problema? No existe un estándar de código abierto ni un marco integral que siga una metodología de código abierto para tests de seguridad, la información recopilada después de un test incluye muchos datos, no existe un patrón exacto y objetivo sobre el comportamiento de los dispositivos de red ni sobre las redes y, finalmente, el número de vulnerabilidades potenciales es muy extenso. El desafío de este dominio reside en tener un gran volumen de datos complejos, donde pueden aparecer diagnósticos inconsistentes. Además, es un dominio no supervisado donde no se han aplicado técnicas de aprendizaje automático anteriormente. Por ello es necesaria una completa caracterización del dominio.

    Consensus es la aportación principal de esta tesis: un marco integrado que incluye un sistema automatizado para mejorar la realización de tests en una red y el análisis de la información recogida. El sistema automatiza los mecanismos asociados a un test de seguridad y minimiza la duración de dicho test, siguiendo la metodología OSSTMM. Puede ser usado en redes cableadas e inalámbricas. La seguridad se puede evaluar desde una perspectiva interna, o bien externa a la propia red. Se recopilan datos de ordenadores, routers, firewalls y detectores de intrusiones. Consensus gestionará los datos a procesar por analistas de seguridad. Información general y específica sobre sus servicios, sistema operativo, la detección de vulnerabilidades, reglas de encaminamiento y de filtrado, la respuesta de los detectores de intrusiones, la debilidad de las contraseñas, y la respuesta a código malicioso o a ataques de denegación de servicio son un ejemplo de los datos a almacenar por cada dispositivo. Estos datos son recopilados por las herramientas de test incluidas en Consensus.

    La gran cantidad de datos por cada dispositivo y el diferente número y tipo de atributos que les caracterizan, complican la extracción manual de un patrón de comportamiento. Las herramientas de test automatizadas pueden obtener diferentes resultados sobre el mismo dispositivo y la información recopilada puede llegar a ser incompleta o inconsistente. En este entorno surge la segunda principal aportación de esta tesis: Analia, el módulo de análisis de Consensus. Mientras que Consensus se encarga de recopilar datos sobre la seguridad de los dispositivos, Analia incluye técnicas de Inteligencia Artificial para ayudar a los analistas después de un test de seguridad. Distintos métodos de aprendizaje no supervisado se han analizado para ser adaptados a este dominio. Analia encuentra semejanzas dentro de los dispositivos analizados y la agrupación de dichos dispositivos ayuda a los analistas en la extracción de conclusiones. Las mejores agrupaciones son seleccionadas mediante la aplicación de índices de validación. A continuación, el sistema genera explicaciones sobre cada agrupación para dar una respuesta más detallada a los analistas de seguridad.

    La combinación de técnicas de aprendizaje automático en el dominio de la seguridad de redes proporciona beneficios y mejoras en la realización de tests de seguridad mediante la utilización del marco integrado Consensus y su sistema de análisis de resultados Analia.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus