En esta memoria abordamos el tópico de las transformadas de Fourier tanto continuas como discretas, sus propiedades y algunos ejemplos de sus aplicaciones. Además extendemos al caso multidimensional esta transformada así como a la de Laplace, la del Seno y Coseno.
En siguiente capítulo realizamos un análisis comparativo de las dos implementaciones del algoritmo discreto de esta transformada integral introducido por H. Ozaktas et al y J. O'Neill en los años 1996 y 1999 respectivamente. Dicho estudio nos permitió aportar numerosas mejoras a los mencionados códigos y generar nuestra propia implementación.
En el tercer capítulo introducimos un algoritmo de cálculo aproximado de la transformada clásica de Fourier en términos de los conocidos polinomios de Szego o polinomios ortogonales en la circunferencia unidad con respecto a una función peso.
Finalmente, en el último capítulo definimos y estudiamos una nueva transformada fraccionaria de Fourier continua que conserva las mismas propiedades frente a los operadores diferenciales fraccionarios que la transformada clásica de Fourier.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados