En esta tesis doctoral. El dibujo racional de nanomateriales avanzados con propiedades controladas se aplicó para su empleo en biosensing, y condujo al desarrollo de dos plataformas diagnosticas para la determinación de infecciones virales y bacterianas. Primero, se desarrolló un método sintético altamente reproducible y robusto para la producción de nanoshells de una aleación AuAg monodispersas basado en remplazamiento galvánico. El protocolo descrito permite el controlo preciso sobre la morfología de las partículas, en términos de grosor de la capa externa y de tamaño del vacío interior, la composición relativa y distribución topológica de los metales noble constituyentes, y su rugosidad y porosidad superficial. Esta predictibilidad sintética, testeada sobre un rango de tamaños, se ha conseguido a través de un estudio sistemático de la relación entre de cada reactivo, juntos a una detallada caracterización de la composición y estructura del material con diferentes técnicas. Además, el análisis de las propiedades plasmonicas de las NSs de AuAg durante su transformación estructural, que se extiende por casi todo el espectro visible hasta las longitudes de ondas del Near-Infrared, reveló una dependencia estricta con sus características morfológicas y composicionales. Estos resultados, también confirmados con cálculos basados en la teoría de Mie, proveyeron la base para su aplicación como amplificadores de señal en un immunoensayo basado en SERS. Segundo, por la primera vez el comportamiento electroquímico de las NSs de AuAg fe reportado. Causado por la corrosión controlada de átomos de Ag contenidos en los núcleos residuales de las partículas y las capas finas de aleación, el estudio voltametrico de estos nanocristales vacíos se reveló fuertemente dependiente de su composición elemental relativa y, parcialmente, de su tamaño y morfología. Un efecto electrocatalitico peculiar apareció solamente para NSs de AuAg con un ratio Au/Ag suficiente para permitir la electrodeposición catalítica de Ag+ encima de la superficie de las partículas a potenciales menos negativos que el potencial de redacción estándar de Ag. Este comportamiento no previamente reportado está causado solo por el carácter levemente oxidante del electrolito utilizado, sin la necesidad de ningún otro co-reactivo u oxidante. Estos resultados constituyeron la base racional para desarrollar NSs de AuAg con propiedades desiderables para su aplicación en el ensayo electroquímico descrito. Aventajándose de las propiedades plasmonicas de las NSs de AuAg, el desarrollo de un ensayo immunocromatografico basad ene SERS para la detección sensible y cuantitativa de MxA, un biomarcador comúnmente asociado a infecciones virales, fue realizado. Gracias a las intensidades plasmonicas amplificadas enseñadas por las NSs de AuAg, resultante por el efecto de cavidad plasmonica comúnmente observado in nanoestructuras vacias, su superifices se portan como un continuo hot-spot, amplificando cualquier señal Raman emitido por reporters inmovilizados encima. Además, la posibilidad de ajustar precisamente la longitud máxima de LSPR de las NSs de AuAg de manera de coincidir con el láser NIR durante la mesura SERS permitió de mejorar la performance analítica. Entonces, las NSs de AuAg fueron fácilmente conjugadas con anticuerpos anti-MxA e integrados en un ensayo immunocromatografico para revelar su presencia en muestras de suero. Después de atenta optimización de los parámetros de la plataforma point-of-care, al proteína MxA pudo ser detectada a un limite de detección de pocos ng/mL. En fin, la capacidad de modular precisamente la composición elemental de las NSs de AuAg portó al diseño de un ensayo electroquímico para la detección rápida de dos bacterias modelos, Escherichia coli and Salmonella typhimurium. Las NSs de AuAg se utilizaron como reporters electroquímicos por la facilidad de generar la señal electroquímica, causada solamente por el carácter levemente oxidante de la matriz biológica. Por otro lado, el recubrimiento polimérico de las partículas confirió la interacción non específica basada en afinidad con las células bacterianas en solución, evitando de necesitar anticuerpos caros y frágiles. A través de esta estrategia de bajo coste, E.coli puso ser detectado en PBS a concentraciones de 102 CFU/mL, mientras también se consiguió la discriminación semi-selectiva de los perfiles corriente-concentración de las dos bacterias modelos.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados