Ayuda
Ir al contenido

Dialnet


Improving heterogeneous system efficiency: architecture, scheduling, and machine learning

  • Autores: Daniel Alexander Nemirovsky
  • Directores de la Tesis: Adrián Cristal Kestelman (dir. tes.), Mateo Valero Cortés (codir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Vasileios Karakostas (presid.), Adrià Armejach Sanosa (secret.), Oscar Palomar Pérez (voc.)
  • Programa de doctorado: Programa de Doctorado en Arquitectura de Computadores por la Universidad Politécnica de Catalunya
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • Computer architects are beginning to embrace heterogeneous systems as an effective method to utilize increases in transistor densities for executing a diverse range of workloads under varying performance and energy constraints. As heterogeneous systems become more ubiquitous, architects will need to develop novel CPU scheduling techniques capable of exploiting the diversity of computational resources. In recognizing hardware diversity, state-of-the-art heterogeneous schedulers are able to produce significant performance improvements over their predecessors and enable more flexible system designs. Nearly all of these, however, are unable to efficiently identify the mapping schemes which will result in the highest system performance.

      Accurately estimating the performance of applications on different heterogeneous resources can provide a significant advantage to heterogeneous schedulers for identifying a performance maximizing mapping scheme to improve system performance. Recent advances in machine learning techniques including artificial neural networks have led to the development of powerful and practical prediction models for a variety of fields. As of yet, however, no significant leaps have been taken towards employing machine learning for heterogeneous scheduling in order to maximize system throughput.

      The core issue we approach is how to understand and utilize the rise of heterogeneous architectures, benefits of heterogeneous scheduling, and the promise of machine learning techniques with respect to maximizing system performance. We present studies that promote a future computing model capable of supporting massive hardware diversity, discuss the constraints faced by heterogeneous designers, explore the advantages and shortcomings of conventional heterogeneous schedulers, and pioneer applying machine learning to optimize mapping and system throughput. The goal of this thesis is to highlight the importance of efficiently exploiting heterogeneity and to validate the opportunities that machine learning can offer for various areas in computer architecture.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno