Ayuda
Ir al contenido

Dialnet


Arquitectura escalable simd con conectividad jerárquica y reconfigurable para la emulación de snn

  • Autores: Mireya Patricia Zapata Rodríguez
  • Directores de la Tesis: Jordi Madrenas Boadas (dir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2017
  • Idioma: español
  • Tribunal Calificador de la Tesis: Carles Ferrer Ramis (presid.), Jordi Cosp Vilella (secret.), Josep Lluis Rosselló Sanz (voc.)
  • Programa de doctorado: Programa Oficial de Doctorado en Ingeniería Electrónica
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • A biological neural system consists of millions of highly integrated neurons with multiple dynamic functions operating in coordination with each other. Its structural organization is characterized by highly hierarchical assemblies. These assemblies are distinguished by locally dense and globally ispersed connections communicated by spikes traveling through the axon to the target neuron. In the last century, approaching the biological complexity of the cortex by means of hardware architectures has continued to be a challenge still unattainable. This is not only due to the massively parallel processing with support for the communication between neurons in large-scale networks, but also for the need of mechanisms that allow the evolution of the neural network efficiently.

      In this context, this thesis contributes to the development of an architecture called HEENS (Hardware Emulator of Evolved Neural System), which supports inter-chip connectivity with a ring topology between a Master Chip (MC) controlling one or more Neuromorphic Chips (NCs). The MC is implemented in a PSoC device that integrates a CPU ARM Dual Core together with programmable logic. The ARM is responsible for setting up the communication ring and executing the software application that controls the data configuration transmission from the algorithm and the neural parameters to all NCs in the network. Besides, the MC is in charge of activating the evolution mode of the network, as well as managing the dispatching of reconfiguration data to any of the nodes during the execution.

      Each NC, in turn, consists of a configurable 2D array of Processing Elements (PEs) with a SIMD-like processing scheme implemented on a Kintex7 FPGA. NCs are SNN multiprocessors that support the execution of any neural algorithm based on spikes. A set of custom instructions was designed specifically for this architecture. The NCs support a hierarchical scheme of local and global spikes to mimic the brain structural configuration. Local spikes establish inter-neuronal connectivity within a single chip and the global ones allow inter-modular communication between different chips. The NCs have fixed hub neurons that process local and global spikes, thus allowing inter-modular and intra-modular connectivity. This definition of local and global spikes allows the development of multi-level hierarchical architectures inspired by the brain topologies, and offers excellent scalability.

      The spike propagation through the multi-chip network is supported by an Aurora / AER-SRT protocol stack.

      The Aurora protocol encapsulates and de-capsulates the packets transmitted through a high-speed serial link that communicates the platform, while the Synchronous Address Event representation (AER-SRT) protocol manages the data (address events) and controls packets that allow synchronization of the operation of the neural network. Each event encapsulates the address neuron that fires a spike as result of the neural algorithm execution.

      The definition of local and global synaptic topology is implemented using on-chip RAM blocks, which reduces the combinational logic requirements and, in addition to allowing the dynamic connectivity configuration, permits the development of evolutionary applications by supporting the on-line reconfiguration of both the neural algorithm or the neural and synaptic parameters. HEENS also supports axon programmable delays, which incorporates dynamic features to the network.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno