Ayuda
Ir al contenido

Dialnet


Resumen de Medium -transparent mac protocols for converged optical wireless networks

Georgios Kalfas

  • In order to address the explosive demand for high-capacity and omnipresent wireless access, modern cell-based wireless networks are slowly adopting two major solution roadmaps. The first is the employment of small-cell formations in order to increase the overall spectral efficiency, whereas the second is the employment of higher frequency bands, such as the mm-wave 60GHz band, that offers vast amounts of bandwidth. Depending on the specific application, the above solutions inevitably require the installation and operational management of large amounts of Base Stations (BSs) or Access Points (APs), which ultimately diminishes the overall cost-effectiveness of the architecture. In order to reduce the system cost, Radio over Fiber (RoF) technology has been put forward as an ideal candidate solution, due to the fact that it provides functionally simple antenna units, often termed as Remote Antenna Units (RAUs) that are interconnected to a central managing entity, termed as the Central Office (CO), via an optical fiber. Although extensive research efforts have been dedicated to the development of the physical layer aspects regarding RoF technologies, such as CO/RAU physical layer design and radio signal transport techniques over fiber, very limited efforts have con-centrated on upper layer and resource management issues. In this dissertation, we are concerned with access control and resource management of RoF-based mm-wave network architectures targeting the exploitation of the dual medium and its centralized control properties in order to perform optimal optical/wireless/time resource allocation. In this dissertation, we propose a Medium-Transparent MAC (MT-MAC) protocol that concurrently administers the optical and wireless resources of a 60GHz RoF based network, seamlessly connecting the CO to the wireless terminals through minimal RAU intervention. In this way, the MT-MAC protocol forms extended reach 60GHz WLAN networks offering connectivity amongst wireless devices that are attached to the same or different RAUs under both Line of Sight (LOS) and non LOS conditions. The notion of medium-transparency relies on two parallel contention periods, the first in the optical domain and the second in the wireless frequency and time domains, with nested dataframe structures. The MT-MAC operation is based on a proposed RAU design that allows for wavelength selectivity functions, thus being compatible with completely passive optical distribution network implementations that are predominately used by telecom operators today. Two variants of the MT-MAC protocol are considered. The first offers dynamic wavelength allocation with fixed time windows, whereas the second targets fairness-sensitive applications by offering dynamic wavelength allocation with dynamic transmission opportunity window sizes, based on the number of active clients connected at each RAU. Both variants of the protocol are evaluated by both simulation and analytical means. For the latter part, this thesis introduces two analytical models for calculating saturation throughput and non-saturation packet delay for the converged MT-MAC protocol. Finally, this thesis presents an extensive study regarding the network planning and formation of 60GHz Gigabit WLAN networks when the latter are deployed over existing Passive Optical Network (PON) infrastructures. Three possible architectures where studied: i) the RoF approach, ii) the Radio & Fiber approach and iii) the hybrid RoF-plus-R&F approach that combines the properties of both the aforementioned architectures. During the elaboration of this thesis, one major key conclusion has been extracted. The work proposed in this thesis considers that there is a fundamental requirement for implementing new converged optical/wireless MAC protocols, that have the complete overview of both available resources in order to effectively administer the hybrid Radio-over-Fiber networks.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus