El cerebro humano es el órgano más complejo del cuerpo humano, que consta de aproximadamente 100 mil millones de neuronas. Estas células se comunican sin esfuerzo a través de ambos hemisferios para favorecer nuestras habilidades sensoriales y cognitivas diarias. Si bien los principios subyacentes de la comunicación neuronal no se comprenden bien, existen pruebas que sugieren que la sincronización precisa y/o la desincronización de los grupos neuronales podrían desempeñar un papel importante. Además, nuevas evidencias sugieren que estos patrones de sincronización podrían usarse como un identificador para la detección de una gran variedad de trastornos neurológicos incluyendo la enfermedad de Alzheimer(AD), la esquizofrenia(SZ) y la epilepsia(EP), donde se ha detectado la degradación neural o las redes hiper sincrónicas. A lo largo de los años, se han propuesto muchas técnicas diferentes para la detección de patrones de sincronización en forma de análisis espectral, enfoques de transformación y análisis estadísticos. No obstante, la mayoría se limita a implementaciones basadas en software en lugar de realizaciones de hardware debido a su complejidad. Además, las pocas implementaciones de hardware que existen, sufren una falta de escalabilidad, en términos de cobertura del área del cerebro, rendimiento y consumo de energía. Aquí presentamos el diseño y la implementación de un algoritmo eficiente de hardware llamado “Delay Difference Aproximation” (DDA) para la identificación de patrones de sincronización específicos del paciente. El diseño es notablemente compatible con el hardware en comparación con otros algoritmos. De hecho, podemos reducir los requisitos de hardware hasta en un 80% y el consumo de energía hasta en un 90%, en comparación con las técnicas más comunes. En términos de sensibilidad absoluta, la DDA produce una sensibilidad promedio de más del 80% para una tasa de falsos positivos de 0,75 PF / hr y hasta un máximo del 90% para niveles de confianza del 95%. Esta tesis presenta dos procesadores digitales para el cálculo de la sincronización de fase entre señales neuronales. Se basa en la medición de los períodos de tiempo entre dos mínimos consecutivos. La simplicidad del enfoque permite el uso de bloques digitales elementales, como registros, contadores o sumadores. De hecho, el primer procesador introducido se fabricó en un proceso CMOS de 0.18μm y solo ocupa 0.05mm2 y consume 15nW de un voltaje de suministro de 0.5V a una tasa de entrada de señal de 1024S/s Estas características de baja área y baja potencia hacen que el procesador propuesto sea un valioso elemento informático en prótesis neurales de circuito cerrado para el tratamiento de trastornos neuronales, como la epilepsia, o para medir mapas de conectividad funcional entre diferentes sitios de registro en el cerebro. Además, se diseñó una segunda implementación VLSI que se integró como un diseño de 16 canales integrado en masa. Se incorporaron al diseño 16 procesadores de sincronización individuales (15 procesadores en línea y 1 procesador de prueba), cada uno con un módulo de entrenamiento y cálculo dedicado, utilizado para construir un sistema de detección epiléptico especializado basado en umbrales de sincronía específicos del paciente. Cada uno de los procesadores principales es capaz de calcular la sincronización de fase entre 9 señales de electroencefalografía (EEG) independientes en 8 épocas de tiempo que totalizan 120 combinaciones de EEG. Cabe destacar que todo el circuito ocupa un área total de solo 3.64 mm2. Este diseño fue implementado teniendo en mente varios propósitos. En primer lugar, como ayuda clínica para ayudar a los médicos a detectar estados cerebrales patológicos, donde el área pequeña permitiría al paciente usar el dispositivo para las pruebas caseras. Además, el pequeño consumo de energía permitiría una carga cero del dispositivo, lo que le permitiría funcionar con baterías estándar durante largos períodos. Los ensayos podrían producir información importante específica para el paciente que podría procesarse utilizando herramientas matemáticas como la teoría de grafos. En segundo lugar, el diseño se centró en el uso como un dispositivo in-vivo para detectar la sincronización de fase en tiempo real para pacientes que sufren trastornos neurológicos como el EP, que necesitan supervisión y retroalimentación constantes. En desarrollos futuros, este dispositivo de sincronización sería una buena base para desarrollar un sistema completo de un dispositivo chip para detección de trastornos neurológicos.
The human brain is the most complex organ in the human body, which consists of approximately 100 billion neurons. These cells effortlessly communicate over multiple hemispheres to deliver our everyday sensorimotor and cognitive abilities. Although the underlying principles of neuronal communication are not well understood, there is evidence to suggest precise synchronisation and/or de-synchronisation of neuronal clusters could play an important role. Furthermore, new evidence suggests that these patterns of synchronisation could be used as an identifier for the detection of a variety of neurological disorders including, Alzheimers (AD), Schizophrenia (SZ) and Epilepsy (EP), where neural degradation or hyper synchronous networks have been detected. Over the years many different techniques have been proposed for the detection of synchronisation patterns, in the form of spectral analysis, transform approaches and statistical based studies. Nonetheless, most are confined to software based implementations as opposed to hardware realisations due to their complexity. Furthermore, the few hardware implementations which do exist, suffer from a lack of scalability, in terms of brain area coverage, throughput and power consumption. Here we introduce the design and implementation of a hardware efficient algorithm, named Delay Difference Analysis (DDA), for the identification of patient specific synchronisation patterns. The design is remarkably hardware friendly when compared with other algorithms. In fact, we can reduce hardware requirements by as much as 80% and power consumption as much as 90%, when compared with the most common techniques. In terms of absolute sensitivity the DDA produces an average sensitivity of more than 80% for a false positive rate of 0.75 FP/h and indeed up to a maximum of 90% for confidence levels of 95%. This thesis presents two integer-based digital processors for the calculation of phase synchronisation between neural signals. It is based on the measurement of time periods between two consecutive minima. The simplicity of the approach allows for the use of elementary digital blocks, such as registers, counters or adders. In fact, the first introduced processor was fabricated in a 0.18μm CMOS process and only occupies 0.05mm2 and consumes 15nW from a 0.5V supply voltage at a signal input rate of 1024S/s. These low-area and low-power features make the proposed circuit a valuable computing element in closed-loop neural prosthesis for the treatment of neural disorders, such as epilepsy, or for measuring functional connectivity maps between different recording sites in the brain. A second VLSI implementation was designed and integrated as a mass integrated 16-channel design. Incorporated into the design were 16 individual synchronisation processors (15 on-line processors and 1 test processor) each with a dedicated training and calculation module, used to build a specialised epileptic detection system based on patient specific synchrony thresholds. Each of the main processors are capable of calculating the phase synchrony between 9 independent electroencephalography (EEG) signals over 8 epochs of time totalling 120 EEG combinations. Remarkably, the entire circuit occupies a total area of only 3.64 mm2. This design was implemented with a multi-purpose focus in mind. Firstly, as a clinical aid to help physicians detect pathological brain states, where the small area would allow the patient to wear the device for home trials. Moreover, the small power consumption would allow to run from standard batteries for long periods. The trials could produce important patient specific information which could be processed using mathematical tools such as graph theory. Secondly, the design was focused towards the use as an in-vivo device to detect phase synchrony in real time for patients who suffer with such neurological disorders as EP, which need constant monitoring and feedback. In future developments this synchronisation device would make an good contribution to a full system on chip device for detection and stimulation.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados