Ayuda
Ir al contenido

Dialnet


Resumen de Influencia de los anticuerpos anti-LDL oxidada y del control glucémico sobre diferentes rutas metabólicas implicadas en la aterogénesis en pacientes con enfermedad arterial periférica y diabetes tipo 2

Victor Gomez-Carrillo

  • Influencia de los anticuerpos anti-LDL oxidada y del control glucémico sobre diferentes rutas metabólicas implicadas en la aterogénesis en pacientes con enfermedad arterial periférica y diabetes tipo 2.

    OBJETIVOS:

    1. Estudiar la expresión génica de diferentes biomarcadores implicados en el proceso aterogénico (apoptosis, inflamación, metabolismo lipídico) en muestras de arteria poplítea ocluida y de arteria mamaria en pacientes con diabetes tipo 2.

    2. Estudiar la influencia del control glucémico en la expresión génica de diferentes biomarcadores implicados en el proceso aterogénico (apoptosis, inflamación, metabolismo lipídico) en muestras de arteria poplítea ocluida en pacientes con diabetes tipo 2.

    3. Analizar la correlación entre los niveles plasmáticos de anticuerpos anti-LDL oxidada IgG e IgM y la expresión génica de diversos biomarcadores implicados en el proceso aterogénico (apoptosis, inflamación, metabolismo lipídico) en muestras de arteria poplítea ocluida en pacientes con diabetes tipo 2.

    MATERIAL-MÉTODOS Y RESULTADOS:

    El estudio incluyó a 20 individuos con DM2 establecida, 5 pacientes con cardiopatía isquémica que fueron sometidos a bypass coronario, presentando un buen control glucémico (HbA1c <6,5%) antes de la intervención. De estos sujetos fueron obtenidas las arterias controles libres de ateroma como la arteria mamaria interna (AMI). Por otro lado, fueron reclutados 15 pacientes que presentaban enfermedad arterial periférica (EAP) grave por lo que fueron sometidos a amputación supracondílea de miembros inferiores, obteniéndose del mismo paciente el paquete vascular compuesto de arteria poplítea ocluida (APO) y vena femoral (VF). Estos pacientes fueron clasificados en función de su HbA1c, considerando buen control (HbA1c ≤ 6,5) y mal control (HbA1c > 6,5).

    Se realizó un estudio histológico y análisis de expresión génica y proteica, en las diferentes muestras de AMI, APO y VF. Tras el análisis de 46 genes, APO mostró niveles de expresión más altos que AMI o VF en cuanto a genes implicados en la trombosis (FT), la apoptosis (MMP2, MMP9, TIMP1 y TIMP3), metabolismo lipídico (LRP1 y NDUFA), la respuesta inmune (TLR2).

    Si clasificamos a los pacientes considerando su HbA1c, en la APO, sólo MMP9 mostró un incremento en su expresión en pacientes con un mal control glucémicos frente a pacientes diabéticos con buen control (p=<0.0001).

    Por otro lado fue estudiada la posible relación entre los niveles plasmáticos de anticuerpos IgG/IgM anti–LDL oxidada (obtenido mediante ELISA) y los diferentes biomarcadores involucrados en las distintas rutas metabólicas ya que la partícula de LDL oxidada se considera la forma más aterogénica del LDL y por tanto tiene una fuerte implicación en la formación de la placa ateromatosa.

    Cuando fueron analizadas las biopsias de APO, solamente los anticuerpos IgM anti – LDL oxidada mostraron una correlación positiva con varios biomarcadores implicados en inflamación (VEGFA), apoptosis (AKT1, BAX, CDKN1A, MMP10) y metabolismo lipídico (SCARB1). Sin embargo, los anticuerpos IgG anti-LDL oxidada no tuvieron correlación con ninguno de los biomarcadores estudiados CONCLUSIONES:

    1. Las arterias poplíteas ocluidas de pacientes con diabetes tipo 2, en comparación con las arterias mamarias libres de ateroesclerosis, presentan una alta expresión de biomarcadores de apoptosis, de inflamación y de metabolismo lipídico.

    2. El mal control glucémico no modifica la expresión génica de diferentes biomarcadores proateroscleróticos (apoptosis, inflamación, metabolismo lipídico) en las arterias poplíteas ocluidas de pacientes con diabetes tipo 2.

    3. Existe una correlación positiva entre los niveles plasmáticos de anticuerpos anti-LDL oxidada IgM y la expresión génica de diferentes biomarcadores implicados en la aterogénesis (apoptosis, inflamación, metabolismo lipídico) en las arterias poplíteas ocluidas de pacientes con diabetes tipo 2.

    BIBLIOGRAFIA:

    1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007; 45 Suppl S:S5-67.

    2. Blanes JI, Cairols MA, Marrugat J; ESTIME. Prevalence of peripheral artery disease and its associated risk factors in Spain: The ESTIME study. Ont Angiol. 2009; 28(1): 20-5.

    3. Forés R, Alzamora MT, Baena JM, Pera G, Torán P, Ingla J; Infradiagnóstico de la arteriopatía periférica en la población española. Estudio ARTPER. Med Clin (Barc). 2010; 135(7): 306-9.

    4. Escobar C, Blanes I, Ruiz A, Vinvesa D, Montero M, Rodríguez M, et al. Prevalence and clinical Profile and management of peripheral arterial disease in edarly patients with diabetes, Eur J Intern Med. 2011; 22(3): 275-81.

    5. Mancera J, Paniagua F, Martos I, Baca A, Ruiz S, González P, et al. Enfermedad arterial periférica oculta en población diabética seguida en Atención Primaria. Clin Invest Arterioscl. 2010; 22(4): 154-61.

    6. Kannel WB, Skinner JJ, Schwartz MJ, Shurtleff D. Intermittent claudication. Incidence in the Framingham Study. Circulation. 1970; 41(5):875-83.

    7. Saito I, Folsom AR, Brancati FL, Duncan BB, Chambless LE, McGovern PG. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med 2000; 133(2): 81-91.

    8. Villar F, Banegas JR, Donado JM, Rodríguez Artalejos F. Las enfermedades cardiovasculares y sus factores de riesgo en España: hechos y cifras. Informe SEA 2003. Madrid: Sociedad Española de Arterioesclerosis (SEA), 2004.

    9. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation. 2004; 110(6):738-43.

    10. Kullo IJ, Bailey KR, Kardia SL, Mosley TH Jr, Boerwinkle E, Turner ST. Ethnic differences in peripheral arterial disease in the NHLBI Genetic Epidemiology Network of Arteriopathy (GENOA) study. Vasc Med. 2003; 8(4): 237-42.

    11. Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clément D, Collet JP, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. European Heart Journal. 2011; 32(22): 2851- 906.

    12. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country – years and 2-7 million participants. Lancet. 2011; 378(9785):31-40.

    13. Lam DW, LeRoith D. The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes. 2012; 19(2): 93-96.

    14. Soriguer F, Goday A, Bosch-Comas A, Bordiú E, Calle-Pascual A, Carmena R, et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@bet.es Study. Diabetologia. 2012; 55(1):88-93.

    15. Yorkshire and Humer public health observatory. Diabetes attributable deaths: estimating the excess deaths among people with diabetes. www.yhpho.org.uk/ Revisado el 25 Noviembre 2011. 16. Goday A. Epidemiology of diabetes and its non-coronary complications. Rev Esp Cardiol. 2002; 55(6):657-70.

    17. Veresiu IA. Assesment of peripheral vascular disease. En: Hâncu N. Cardiovascular risk in type 2 diabetes mellitus.Berlin: Springer Verlag; 2003.p. 227-39.

    18. Bundó M, Muñoz L, Pérez C, Montero J, Montero N, Toran P, et al. Asymptomatic peripheral arterial disease in type 2 Diabetes Patients: A 10 years follow up study of the utility of the ankle brachial index as a prognostic marker of cardiovascular disease. Ann Vasc Surg. 2010; 24(8): 985-93.

    19. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/ Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter- Society Consensus; and Vascular Disease Foundation. Circulation. 2006; 113(11): e463-654.

    20. Luque Otero M, Martell Claros N. Hipertensión arterial y síndrome metabólico. Med Clin (Barc). 2004; 123(18):707-11.

    21. Cheung BM, Ong KL, Wong LY. Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999-2004. Int J Cardiol. 2009; 135(2): 156-61.

    22. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care. JAMA. 2001; 286(11): 1317-24.

    23. Sentí M, Nogués X, Pedro-Botet J, Rubiés- Prat J, Vidal-Barraquer F. Lipoprotein Profile in men with peripheral vascular disease. Role of intermediate density lipoproteins and apoprotein E phenotypes. Circulation. 1992; 85(1): 30-6.

    24. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation. 1998; 97(5): 425-8.

    25. Kendrick J, Ix JH, Targher G, Smits G, Chonchol M. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol. 2010; 106(4): 564-8.

    26. Shankar A, Klein BE, Nieto FJ, Klein R. Association between serum uric acid level and peripheral arterial disease. Atherosclerosis. 2008; 196(2): 749-55.

    27. McDermott MM, Criqui MH, Greenland P, Guralnik JM, Liu K, Pearce WH, et al. Leg strength in peripheral arterial disease: associations with disease severity and lower-extremity performance. J Vasc Surg. 2004; 39(3): 523-30.

    28. Eraso LH, Fukaya E, Mohler ER 3rd, Xie D, Sha D, Berger JS. Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur J Prev Cardiol. 2014; 21(6):704-11.

    29. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk factor assessment equations. A statement for healthcarre professionals from the American Heart Association.

    30. Dock W. Research in arteriosclerosis; the first fifty years. Ann Intern Med. 1958; 49(3): 699–705.

    31. Ross, R., Atherosclerosis--an inflammatory disease. N Engl J Med. 1999; 340(2): 115-26.

    32. Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation. 1990; 82(3 Suppl):II47-59.

    33. Ouriel K. Peripheral arterial desease. Lancet. 2001 Oct 13;358 (9289):1257-64.

    34. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lesson from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75.

    35. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998; 279: 1477-82.

    36. Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB et al. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med. 1994; 331(7): 417-24.

    37. Fiesta A, D’Agostino R Jr, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102(1): 42-47.

    38. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19(4): 972-8.

    39. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996; 271(5249): 665-8.

    40. Nilsson J, Jovinge S, Niemann A, Reneland R, Lithell H. Relation between plasma tumor necrosis factor-alpha- and insulin sensitivity in elderly men with non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1998; 18(8): 1199-1202.

    41. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000; 20(6): 1595-9.

    42. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011; 91(1): 327-387.

    43. Libby P, Ridker PM, Hansson GK.Progress and challenges in translating the biology of atherosclerosis. Nature. 2011; 473 (7347): 317-25.

    44. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000; 101(15): 1780-4.

    45. Kirstein M, Brett J, Radoff S, Ogawa S, Stern D, Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci USA. 1990; 87(22): 9010-4.

    46. Best PJ.M, Hasdai D, Sangiorgi G, Schwartz RS, Holmes DR Jr, Simari RD, et al. Apoptosis.Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol. 1999; 19(1):14-22.

    47. Kockx MM. Apoptosis in the atherosclerotic plaque. Quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol. 1998; 18(10):1519-22.

    48. Kockx MM, Herman AG. Apoptosis in atherogenesis: implications for plaque destabilization. Eur Heart J 1998; 19(Suppl G): G23-8.

    49. Geng YG, Libby P. Evidence for apoptosis in advanced human atheroma: colocalization with interleukin 1b converting enzyme. Am J Pathol. 1995; 147(2): 251-66.

    50. Geng YG, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with IFN-g, TNF-a, and IL-1b. Arterioscler Thromb Vasc Biol. 1996; 16(1):19-27.

    51. Hamet P. Proliferation and apoptosis of vascular smooth muscle in hypertension. Am J Pathol. 1998;152(2): 523-32.

    52. Businaro R, Digregorio M, Riganò R, Profumo G, Buttari B, Leone S, et al. Morphological analysis of cell subpopulations within carotid atherosclerotic plaque. Ital J Anat Embryol 2005; 110 (2 Suppl. 1): 109-15.

    53. Zhou X, Stemme S, Hansson G. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol. 1996; 149(2): 359-66. 54. Reardon C, Blachowicz L, White T, Cabana V, Wang Y, Lukens J, et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2001; 21(6): 1011-1016.

    55. Frostergard J, Ulfgren A, Nyberg P, Hedin U, Swedenborg J, Andersson U,et al. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999; 145(1): 33-43.

    56. Leon M, Zuckerman S. Gamma interferon: A central mediator in atherosclerosis. Inflamm Res. 2005; 54(10): 395-411. 57. Tenger C, Sundborger A, Jawien J, Zhou X. IL-18 accelerates atherosclerosis accompanied by elevation of INF- γ and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol. 2005; 25(4):791-6.

    58. Robertson A, Hansson G. T cells in atherogenesis: For better or for worse?. Arterioscler Thromb Vasc Biol. 2006; 26(11): 2421-32.

    59. Binder C, Hartvigsen K, Chang M, Miller M, Broide D, Palinski W, et al. IL-5 links adaptative and natural immunity specific for epítopes of oxidized LDL and protects from atherosclerosis. J Clin Invest. 2004; 114(3): 427-37.

    60. Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukun-10. J Exp Med. 1991; 174(6): 1549-55.

    61. Lee Y, Kuhn H, Henning B, Neish A, Toborek M. IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J Mol Cell Cardiol 2001; 33(1): 83-94. 62. Lee Y, Henning B, Toborek M. Redox-regulated mechanism of IL-4 induced MCP-1 expression inhuman vascular endothelial cells. Am J Physiol Heart Circ Physiol 2003; 284(1): 185-92. 63. Chait A, Brazg R, Tribble D, Krauss R. Susceptibility of small dense low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype pattern B. Am J Med. 1993; 94(4): 350-6. 64. Patel RS, Al Mheid I, Morris AA, Ahmed Y, Kavtaradze N, Ali S, et al. Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis. 2011; 218(1): 90-5.

    65. Kune N, Cybulsky M, Gimbrone M. Lysophosphatidylcholine, a component of atherogenic lipoprotein, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992; 90(3): 1138-44.

    66. Li D, Mehta L. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 2000; 101(25): 2889-95. 67. Breslow JL. Genetics of lipoprotein abnormalities associated with coronary artery disease susceptibility. Annu Rev Genet. 2000; 34: 233-54.

    68. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low density lipoprotein that increases its atherogenicity. N. Engl. J. Med. 1989. 320(14): 915-24.

    69. Takahashi Y, Zhu H, Yoshimito T. Essential roles of lipoxygenases in LDL oxidation and development of aterosclerosis.. Antioxid. Redox Signal. 2005; 7(3-4): 425-31.

    70. Gaziano JM. Dietary antioxidants and cardiovascular disease. Vitam Horm 2000;58:299–320.

    71. Catapano AL, Maggi FM, Tragni E. Low density lipoprotein oxidation, antioxidants, and atherosclerosis. Curr Opin Cardiol 2000;15(5): 355–63.

    72. Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA. 1989;86(4):1372–76.

    73. Inoue, T, Uchida T, Kamishirado H, Takayanagi K, Hayashi T, Morooka S. Clinical significance of antibody against oxidized low density lipoprotein in patients with atherosclerotic coronary artery disease. J. Am. Coll. Cardiol. 2001; 37(3): 775–79.

    74. Che J, Li G, Wang W, Li Q, Liu H, Chen K, Liu T. Serum autoantibodies against human oxidized low-density lipoproteins are inversely associated with severity of coronary stenotic lesions calculated by Gensini score. Cardiol J. 2011; 18 (4):364-70.

    75. Wang JJ, Han AZ, Meng Y, Gong JB, Zhang CN, Li K, et al. Measurement of oxidized lipoprotein(a) in patients with acute coronary syndromes and stable coronary artery disease by 2 ELISAs: using different capture antibody against oxidized lipoprotein(a) or oxidized LDL. Clin Biochem. 2010; 43(6): 571-75.

    76. Monaco C, Crea F, Niccoli G, Summaria F, Cianflone D, Bordone R, et al. Autoantibodies against oxidized low density lipoproteins in patients with stable angina, unstable angina or peripheral vascular disease; pathophysiological implications. Eur Heart J. 2001; 22(17): 1572-7.

    77. Tinahones FJ, Gómez-Zumaquero JM, Rojo-Martínez G, Cardona F, Esteva de Antonio IE, Ruiz de Adana MS, et al. Increased levels of anti-oxidized low-density lipoprotein antibodies are associated with reduced levels of cholesterol in the general population. Metabolism. 2002; 51(4): 429-31.

    78. Garrido-Sanchez L, Garcia-Fuentes E, Cardona F, Rojo-Martinez G, Soriguer F, Tinahones FJ. Anti-oxidized LDL antibody levels are reduced in women with hypertension. Eur J Clin Invest. 2009; 39(9): 800-6.

    79. Garrido-Sanchez L, Garcia-Almeida JM, Garcia-Serrano S, Cardona I, Garcia-Arnes J, Soriguer F, et al. Improved carbohydrate metabolism after bariatric surgery raises antioxidized LDL antibody levels in morbidly obese patients. Diabetes Care 2008; 31(12): 2258-64.

    80. Hulthe J, Wikstrand J, Lidell A, Wendelhag I, Hansson GK, Wiklund O. Antibody titers against oxidized LDL are not elevated in patients with familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1998; 18(8): 1203–11.

    81. Festa A, Kopp HP, Schernthaner G, Menze EJ. Autoantibodies to oxidised low density lipoproteins in IDDM are inversely related to metabolic control and microvascular complications. Diabetologia. 1998; 41(3): 350–6.

    82. Tinahones FJ, Gomez-Zumaquero JM, Garrido-Sánchez L, García-Fuentes E, Rojo-Martínez G, Esteva I, et al. Influence of age and sex on levels of anti-oxidized LDL antibodies and anti-LDL immune complexes in the general population. J. Lipid Res. 2005; 46(3): 452–7.

    83. Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 2000; 102(9): 1014-19.

    84. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease. A statement for healthcare professionals from the American Heart Association. Circulation 1999; 100(10): 1134-46.

    85. Bernal-Lopez MR, Llorente-Cortes V, Calleja, Lopez-Carmona D, Mayas MD, Gomez-Huelgas R, et al. Effect of different degrees of impaired glucose metabolism on the expression of inflammatory markers in monocytes of patients with atherosclerosis. Acta Diabetol. 2013; 50(4): 553-62.

    86. Bernal-Lopez RM, Llorente-Cortes V, López-Carmona D, Mayas DM, Gomez-Huelgas R, Tinahones FJ, et al. Modulation of human monocyte CD36 by type 2 diabetes mellitus and other atherosclerotic risk factors. Eur J Clin Invest. 2011; 41(8): 854-62 87. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6): 421-31.

    88. Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258): 405-12.

    89. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15): 1565-76.

    90. Pop – Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 2009; 119(22): 2886-93.

    91. Gómez Huelgas R. Beneficios del control glucémico en la diabetes tipo 2. Certezas e incertidumbres derivadas de los últimos estudios. Av Diabetol. 2009; 25: 222-8 Epub Marzo 18, 2009. Accesible en www.sediabetes.org, último acceso 25.04.2016.

    92. Gaede P, Lund-Andersen H,Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6): 580-91.

    93. Huang ES, Meigs JB, Singer DE. The effect of interventions to prevent cardiovascular disease in patients with type 2 diabetes mellitus. Am J Med. 2001;111(8): 633-42.

    94. Gerstein HC, Miller ME,Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24): 2545-59.

    95. Patel A, MacMahon S, Chalmers J, Neal B, Billot L,Woodward M,etal. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med.2008;358(24): 2560-72.

    96. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-39.

    97. American Diabetes Association. Standards of Medical Care in Diabetes-2015. Diabetes Care 2015; Vol 38. Suppl 1.

    98. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002; 106(25): 3143-421.

    99. Friedewald WT, Levi RI, Fredrickson SD. Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6): 499-502.

    100. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412–9 101. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.

    102. De Jonge HJM, Fehrmann RSN, De Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, et al. Evidence Based Selection of Housekeeping Genes. PLoS One. 2007; 2(9): e898.

    103. Chaulet H, Desgranges C, Renault MA, Dupuch F, Ezan G, Peiretti F, et al. Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res. 2001; 89(9): 772-8.

    104. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U A. 1979; 76(9):4350-4. 105. Ritchie ME. Nuclear Factor-κβ is selectively and markedly activated in humans with unstable angina pectoris. Circulation. 1998; 98(17): 1707-13.

    106. Golovchenko I, Goalstone ML, Watson P, Brownlee M, Draznin B. Hyperinsulinemia enhances transcriptional activity of nuclear factor-κβ induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells. Circ Res 2000; 87(9): 746-52.

    107. Karoly ED, Li Z, Dailey LA, Hyseni X, Huang YC. Up-regulation of tissue factor in human pulmonary artery endothelial cells after ultrafine particle exposure. Environ Health Perspect. 2007; 115 4): 535-40.

    108. Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation. 1997; 95(3): 594-9.

    109. Elejalde Guerra JI. Oxidative stress, diseases and antioxidant treatment. An Med Interna. 2001; 18(6): 326-35.

    110. Llorente-Cortes V, Otero-Viñas M, Sanchez S, Rodriguez C, Badimon L. Low-density lipoprotein upregulates low-density lipoprotein receptor-related protein expression in vascular smooth muscle cells: possible involvement of sterol regulatory element binding protein-2-dependent mechanism. Circulation. 2002; 106(24): 3104-10.

    111. Sendra J, Llorente-Cortés V, Costales P, Huesca-Gómez C, Badimon L. Angiotensin II upregulates LDL receptor-related protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension. Cardiovasc Res. 2008; 78(3): 581-9.

    112. Llorente-Cortes V, Martínez-Gonzalez J, Badimon L. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000; 20(6): 1572-79.

    113. Hiltunen TP, Luoma JS, Nikkari T, Ylä-Herttuala S. Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation 1998, 97(11):1079–86.

    114. Llorente-Cortes V, Otero-Viñas M, Berrozpe M, Badimon L. Intracellular lipid accumulation, low-density lipoprotein receptor-related protein expression, and cell survival in vascular smooth muscle cells derived from normal and atherosclerotic human coronaries. Eur J Clin Invest. 2004; 34(3):182–90.

    115. Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia Part 1-Review of Lipid Metabolism and Vascular Cell Physiology. Vasc Endovascular Surg. 2016; 50(2): 107-18.

    116. Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, Lee JH, et al. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol 2011; 7(2):69–76.

    117. Zhou S, Feely J, Spiers JP, Mahmud A: Matrix metalloproteinase-9 polymorphism contributes to blood pressure and arterial stiffness in essential hypertension. J Hum Hypertens. 2007; 21(11):861–67.

    118. Ganea E, Trifan M, Laslo AC, Putina G, Cristescu C: Matriz metalloproteinases: useful and deleterious. Biochem Soc Trans. 2007; 35(4): 689–91.

    119. Hopps E, Caimi G. Matrix metalloproteases as a pharmacological target in cardiovascular diseases. Eur Rev Med Pharmacol Sci. 2015;19(14):2583-9.

    120. Hansson J, Vasan RS, Ärnlöv J, Ingelsson E, Lind L, Larsson A, et al. Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS One. 2011; 6(1):e16185.

    121. Huang Y, Song L, Wu S, Fan F, Lopes-Virella MF: Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis 2001; 156(1):119–25.

    122. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116(11):3015–25.

    123. Carmody RJ, Chen YH. Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol. 2007; 4(1):31–41.

    124. Millán Núñez-Cortés, J. International Atherosclerosis Society Guidelines for Management of Dyslipidemia. Clin Invest Arterioscl. 2014; 26(1): 20.

    125. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013; 368(14):1279-90.

    126. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, et al. PREDIMED Study Investigators. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006; 145(1):1-11.

    127. Salas-Salvadó J, Fernández-Ballart J, Ros E, Martínez-González MA, Fitó M, Estruch R, et al. PREDIMED Study Investigators. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med. 2008; 168(22): 2449-58.

    128. Singh U, Jialal I. Oxidative stress and atherosclerosis.Pathophysiology. 2006; 13(3): 129-142.

    129. Krötz F, Hae-Young S, Pohl U. Reactiveoxygen species. Players in the platelet game. Arterioscler Thromb Vasc Biol. 2004; 24(11):1988-96.

    130. Steinberg D. Oxidative modification of LDL and atherogenesis. Circulation. 1997; 95(4):1062-71.

    131. Aldred S. Oxidative and nitrative changes seen in lipoproteins following exercise. Atherosclerosis. 2007; 192(1): 1-8.

    132. Chan KC, Wang CJ, Ho HH, Chen HM, Huang CN. Simvastatin inhibits cell cycle progression in glucose-stimulated proliferation of aortic vascular smooth muscle cells by up-regulating cyclin dependent kinase inhibitors and p53. Pharmacol Res. 2008; 58(3-4): 247-256.

    133. Game BA, He L, Jarido V, Nareika A, Jaffa AA, Lopes-Virella MF, et al. Pioglitazone inhibits connective tissue growth factor expression in advanced atherosclerotic plaques in low-density lipoprotein receptor-deficient mice. Atherosclerosis. 2007; 192(1): 85-91.

    134. Ewart MA, Kennedy S. AMPK and vasculoprotection. Pharmacol Ther. 2011; 131(2): 242-53.

    135. Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, et al. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrino.l 2009; 23(4):434–43.

    136. Bernal-Lopez MR, Llorente-Cortes V, Gomez-Huelgas R, Badimon L, Tinahones FJ. Intimate relation between genic expression of scavenger receptor CD36 and SREBP2. Proc Biochem. 2010; 45(6): 1002-06.

    137. Sampson MJ, Davies IR, Braschi S, Ivory K, Hughes DA. Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes. Atherosclerosis. 2003; 167(1): 129-134.

    138. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131): 837-53.

    139. Dluhy RG, McMahon GT: Intensive Glycemic Control in the ACCORD and ADVANCE Trials. N Engl J Med 2008, 358(24): 2630–33.

    140. Burut DF, Karim Y, Ferns GA. The role of immune complexes in atherogenesis. Angiology. 2010; 61(7): 679-89.

    141. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009; 120(5): 417-26.

    142. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001; 7(4): 425–9.

    143. Bernal-Lopez MR, Garrido-Sanchez L, Gomez-Carrillo V, Gallego-Perales JL, Llorente-Cortes V, Calleja F, et al. Antioxidized LDL antibodies are associated with different metabolic pathways in patients with atherosclerotic plaque and type 2 diabetes. Diabetes Care. 2013; 36(4):1006-1.

    144. Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001; 936: 226–236.

    145. Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK , et al. Genetic variant of the scavenger receptor B1 in humans. N Engl J Med. 2011; 364(2): 136-45.

    146. Sugawara A, Uruno A, Matsuda K, Funato T, Saito-Hakoda A, Kudo M, Ito S. Effects of PPARγ agonists against vascular and renal dysfunction. Curr Mol Pharmacol. 2012;5(2): 2458-254.

    147. Genolet R, Wahli W, Michalik L. PPARs as drug targets to modulate inflammatory responses? Curr Drug Targets Inflamm Allergy. 2004; 3(4):361-75.

    148. Bennett M.R. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Research. 1999; 41(2): 361-8.

    149. Kockx M.M, De Meyer G.R.Y, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998; 97(23): 2307-15.

    150. Pollman MJ, Hall JL, Mann MJ, Zhang L Gibbons GH. Inhibition of neointimal cell Bcl-x expression induces apoptosis and regression of vascular disease. Nat Med. 1998; 4(2):222-7.

    151. Wang BY, Ho HKV, Lin PS, Schwarzacher SP, Pollman MJ, Gibbons GH, et al. Regression of atherosclerosis: Role of nitric oxide and apoptosis. Circulation. 1999; 99(9):1236-41.

    152. Kockx MM, Herman AG. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res. 2000; 45(3): 736-46.

    153. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004;37(2): 449-71.

    154. Mitra S, Khaidakov M, Lu J, Ayyadevara S, Szwedo J, Wang XW, et al. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Am J Physiol Heart Circ Physiol. 2011; 301(2): H506-13.

    155. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002; 132(8 Suppl): 2406S–2409S.

    156. Newman PE. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypotheses. 1999; 53(5): 421–4.

    157. Zaina S, Lindholm M, Lund G. Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr. 2005; 135(1):5–8.

    158. Mehta JL. Oxidized or native low-density lipoprotein cholesterol: which is more important in atherogenesis? J Am Coll Cardiol. 2006; 48(5): 980–2.

    159. Tekabe Y, Li Q, Luma J, Weisenberger D, Sedlar M, Harja E. Noninvasive monitoring the biology of atherosclerotic plaque development with radiolabeled annexin V and matrix metalloproteinase inhibitor in spontaneous atherosclerotic mice. J Nucl Cardiol. 2010; 17(6): 1073–81.

    160. Al-Khalaf HH, Hendrayani SF, Aboussekhra A. ATR controls the p21 (WAF1/Cip1) protein up-regulation and apoptosis in response to low UV fluences. Mol Carcinog. 2012; 51(12): 930-8.

    161. Tokumoto M, Tsuruya K, Fukuda K, Kanai H, Kuroki S, Hirakata H, et al. Parathyroid cell growth in patients with advanced secondary hyperparathyroidism: vitamin D receptor and cyclin-dependent kinase inhibitors, p21 and p27. Nephrol Dial Transplant. 2003; 18 (Suppl 3): iii9-12.

    162. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994; 54(5): 1169-74.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus