The present doctoral thesis is set within the scope of the current energy transition, which considers the progressive substitution of non-renewable fossil sources by renewable feedstocks for the production of chemicals and fuels. In this context of gradual transition, and according to recent energy outlooks, fossil sources (especially natural gas) and biomass feedstocks will play a key role during the shift.
A study on the use of metal oxides (based on tungsten bronzes or nickel oxides) as catalysts for different reactions has been conducted. Particularly, they have been studied as catalytic materials for: i) the transformation of biomass-derived feedstocks: glycerol transformation into acrolein/acrylic acid, and the transformation of short-chain oxygenates present in aqueous effluents (derived from extraction processes of pyrolysis bio-oils) into fuels; and ii) the valorization of natural gas components, i.e. the transformation of ethane into ethylene by oxidative dehydrogenation. The work is presented from a materials chemistry perspective, emphasizing the physicochemical characteristics of the different catalytic systems by using conventional and in situ characterization techniques and model reactions (gas phase methanol and ethanol transformation); with the aim of understanding the specific catalytic functionalities present in each case.
For both gas phase glycerol transformation and the valorization of short-chain oxygenates aqueous mixtures, catalyst based on tungsten oxide bronzes have been used. The compositional and structural versatility of this structural types (with the subsequent control of their functional properties) will be highlighted.
In this sense, the acid-redox properties of W-V-O catalysts can be modulated by controlling the crystalline phase composition in the materials (i.e. hexagonal and monoclinic polymorphs of tungsten oxide) at a fixed V concentration. This effect has been studied by using the gas-phase aerobic transformation of methanol as a surface test reaction. The concentration of the hexagonal and monoclinic polymorphs in the catalysts has also an important influence in the gas-phase transformation of glycerol into acrylic acid.
Also, it is possible to control the Brönsted/Lewis acid nature of the surface by the isomorphic substitution of Nb for W in WO3-Nb2O5 system. On the one hand, catalysts showing a higher proportion of Brönsted acid sites are more effective in the glycerol dehydration to acrolein. On the other hand, materials with a higher concentration of Lewis acid sites display high yields to condensation products in the aqueous phase valorization of short chain oxygenates.
Additionally, the differences between W-V-O and W-Nb-O catalysts prepared by both reflux and hydrothermal methods have been studied. Also the effect of adding a mesoporous KIT-6 silica as support on the catalytic performance in the gas phase transformation of ethanol and glycerol will be underlined.
Considering the transformation of natural gas components, nickel oxide-based materials were chosen (either supported on different oxides and/or promoted with different metals) to perform the oxidative dehydrogenation (ODH) of ethane. In this case the study has been focused on elucidating the effects of both promoters and supports on the nature and physicochemical features of nickel oxide, which lead to a drastic change in the catalytic behavior of these materials. This way, it has been observed that by the modification of the reducibility and the chemical nature of nickel oxide, it is possible to transform an apparently non-selective catalyst in the ODH of ethane (like NiO, showing a selectivity to ethylene of ca. 30 %) into one of the most selective catalysts reported in the literature (presenting a selectivity to ethylene of ca. 90 %).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados