Organic-inorganic methylammonium lead halides perovskites and their mixtures have shown optimal optoelectronic properties as an ideal absorber for photovoltaic applications. In the last decade, solar devices based on perovskite have evolved rapidly, going from an initial efficiency of only 3.9% in 2009, to an efficiency of 22.7% in 2017 and being, at the same time, more cost-effective than silicon solar cells. However, one of the main disadvantages when using perovskite absorbents in photovoltaic devices is their low stability. In general, cells that show high performance lose their efficiency and degrade rapidly. For these materials to be scalable it is necessary to carry out in-depth studies aiming at improved efficiency and stability. One of the main sources to improve stability and efficiency is compositional engineering, a strategy employed in the elaboration of this thesis, consisting of the investigation and improvement of the optoelectronic and morphological properties, derived from the substitution and / or combination of cations and anions, which constitute the perovskite material. Pure powders of perovskite were synthesized, for I, Br, Cl, from which pure and mixed MAPbX3-xYx films were prepared in order to improve their optoelectronic and structural properties. By means of X-ray diffraction analysis, the structural properties of crystalline powders and pure and mixed films were studied. Employing UV-vis and photoluminescence analysis, it was observed that the absorption range varied along the visible spectrum as a function of the halide content in the thin films. Both, photoluminescence and differential scanning calorimetry analysis showed the changes of phase of the pure perovskites at different temperatures. FESEM characterization of the pure perovskites showed the morphological differences between the powders and the films. Following this line of research, mixed perovskites of iodine-bromine with a bromine content of up to 33% were studied in more detail. The bandgap was tuned to avoid significant losses in absorption and improve the optoelectronic, structural and morphological properties. Despite the excellent optoelectronic properties of the methylammonium perovskite, the presence of the organic cation decreases its stability, which prompted research into the use of other inorganic cations. Cesium perovskites, are a very promising alternative, and for this reason we synthesized thin films of mixed cesium perovskites, CsPbBr3-xIx, to determine the effects of the partial substitution of iodine on physical properties and stability. Films with a very good resistance to moisture and temperature were obtained, which will favor the application of this type of perovskites in the photovoltaic field. The partial replacement of the methylammonium cation with other organic cations, such as guanidinium and imidiazolium, was also studied, showing that small amounts of guanidinium significantly improve the stability of the films and their morphology. It was established that the solubility limit of guanidinium is approximately 20%, and the crystalline structure of the mixtures was determined. An increase in the intensity of the photoluminescence peak for mixtures below the solubility limit was observed. Similar results were obtained for the substitution of methylammonium with small amounts of imidazolium. X-ray diffraction analyzes established the solubility limit at approximately 10% and an improvement in crystallinity. Photoluminescence results suggest that small amounts of imidazolium significantly reduce nonradiative recombinations, acting as an effective passivator. Finally, the manufacturing process of devices based on MAPbI3 and synthesized according to environmental conditions, especially relative humidity and using diethyl ether as anti-solvent is shown. The devices presented a maximum efficiency of 14.73%, proving that the oxidation of spiro-OMeTAD, under controlled humidity conditions, can improve efficiency.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados