Ayuda
Ir al contenido

Dialnet


3d subject-specific shape and density modeling of the lumbar spine from 2d dxa images for osteoporosis assessment

  • Autores: Mirella López Picazo
  • Directores de la Tesis: Miguel Ángel González Ballester (dir. tes.), Ludovic Humbert (codir. tes.)
  • Lectura: En la Universitat Pompeu Fabra ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Mathieu De Craene (presid.), Jerome Bernard Noailly (secret.), Serge Ferrari (voc.)
  • Programa de doctorado: Programa de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Pompeu Fabra
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Osteoporosis is the most common bone disease, with a significant morbidity and mortality caused by the increase of bone fragility and susceptibility to fracture. Dual Energy X-ray Absorptiometry (DXA) is the gold standard technique for osteoporosis and fracture risk evaluation at the spine. However, the standard analysis of DXA images only provides 2D measurements and does not differentiate between bone compartments; neither specifically assess bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative Computed Tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management.

      In this thesis, a method providing a 3D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior DXA image is proposed. The method is based on a 3D statistical shape and density model built from a training set of QCT scans. The 3D subject-specific shape and density estimation is obtained by registering and fitting the statistical model onto the DXA image. Cortical and trabecular bone compartments are segmented using a model-based algorithm. 3D measurements are performed at different vertebral regions and bone compartments. The accuracy of the proposed methods is evaluated by comparing DXA-derived to QCT-derived 3D measurements.

      Two case-control studies are also performed: a retrospective study evaluating the ability of DXA-derived 3D measurements at lumbar spine to discriminate between osteoporosis-related vertebral fractures and control groups; and a study evaluating the association between DXA-derived 3D measurements at lumbar spine and osteoporosis related hip fractures. In both studies, stronger associations are found between osteoporosis-related fractures and DXA-derived 3D measurements compared to standard 2D measurements.

      The technology developed within this thesis offers an insightful 3D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had a standard DXA scan of the lumbar spine without any additional examination


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno