Ayuda
Ir al contenido

Dialnet


Resumen de Ubiquitous supercomputing design and development of enabling technologies for multi-robot systems rethinking supercomputing

Leonardo Camargo Forero

  • Supercomputing, also known as High Performance Computing (HPC), is almost everywhere (ubiquitous), from the small widget in your phone telling you that today will be a sunny day, up to the next great contribution to the understanding of the origins of the universe.However, there is a field where supercomputing has been only slightly explored - robotics. Other than attempts to optimize complex robotics tasks, the two forces lack an effective alignment and a purposeful long-term contract. With advancements in miniaturization, communications and the appearance of powerful, energy and weight optimized embedded computing boards, a next logical transition corresponds to the creation of clusters of robots, a set of robotic entities that behave similarly as a supercomputer does. Yet, there is key aspect regarding our current understanding of what supercomputing means, or is useful for, that this work aims to redefine. For decades, supercomputing has been solely intended as a computing efficiency mechanism i.e. decreasing the computing time for complex tasks. While such train of thought have led to countless findings, supercomputing is more than that, because in order to provide the capacity of solving most problems quickly, another complete set of features must be provided, a set of features that can also be exploited in contexts such as robotics and that ultimately transform a set of independent entities into a cohesive unit.This thesis aims at rethinking what supercomputing means and to devise strategies to effectively set its inclusion within the robotics realm, contributing therefore to the ubiquity of supercomputing, the first main ideal of this work. With this in mind, a state of the art concerning previous attempts to mix robotics and HPC will be outlined, followed by the proposal of High Performance Robotic Computing (HPRC), a new concept mapping supercomputing to the nuances of multi-robot systems. HPRC can be thought as supercomputing in the edge and while this approach will provide all kind of advantages, in certain applications it might not be enough since interaction with external infrastructures will be required or desired. To facilitate such interaction, this thesis proposes the concept of ubiquitous supercomputing as the union of HPC, HPRC and two more type of entities, computing-less devices (e.g. sensor networks, etc.) and humans.The results of this thesis include the ubiquitous supercomputing ontology and an enabling technology depicted as The ARCHADE. The technology serves as a middleware between a mission and a supercomputing infrastructure and as a framework to facilitate the execution of any type of mission, i.e. precision agriculture, entertainment, inspection and monitoring, etc. Furthermore, the results of the execution of a set of missions are discussed.By integrating supercomputing and robotics, a second ideal is targeted, ubiquitous robotics, i.e. the use of robots in all kind of applications. Correspondingly, a review of existing ubiquitous robotics frameworks is presented and based upon its conclusions, The ARCHADE's design and development have followed the guidelines for current and future solutions. Furthermore, The ARCHADE is based on a rethought supercomputing where performance is not the only feature to be provided by ubiquitous supercomputing systems. However, performance indicators will be discussed, along with those related to other supercomputing features.Supercomputing has been an excellent ally for scientific exploration and not so long ago for commercial activities, leading to all kind of improvements in our lives, in our society and in our future. With the results of this thesis, the joining of two fields, two forces previously disconnected because of their philosophical approaches and their divergent backgrounds, holds enormous potential to open up our imagination for all kind of new applications and for a world where robotics and supercomputing are everywhere.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus