Ayuda
Ir al contenido

Dialnet


Flow and heat transfer of impinging synthetic jets

  • Autores: Arnau Miró Jané
  • Directores de la Tesis: Manel Soria Guerrero (dir. tes.), Juan Carlos Cajas García (codir. tes.)
  • Lectura: En la Universitat Politècnica de Catalunya (UPC) ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Enrique García Melendo (presid.), Antonio Vernet Peña (secret.), Andrey Gorobets (voc.)
  • Programa de doctorado: Programa de Doctorado en Ingeniería Mecánica, Fluidos y Aeronáutica por la Universidad Politécnica de Catalunya
  • Materias:
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Synthetic jets are produced by the oscillatory movement of a membrane inside a cavity, causing fluid to enter and leave through a small orifice. This results in a net jet that is able to transfer kinetic energy and momentum to a fluid medium without the need of an external fluid source. This is why synthetic jets are interesting and will have key roles in a wide range of relevant applications such as active flow control, thermal cooling or fuel mixing. From the phenomenological point of view, synthetic jets are formed by elaborate flow patterns given their non-linear nature and, under certain conditions, unstable complex flows can be observed.

      The present dissertation is focused on the investigation of the fluid flow and thermal performance of synthetic jets. Two different synthetic jet actuator geometries (i.e., slotted and circular) are studied. The jets in both configurations are confined by two parallel isothermal plates with an imposed temperature difference, and impinge into a heated plate located at a certain distance from the actuator orifice. The unsteady three-dimensional Navier-Stokes equations are solved for a range of Reynolds numbers using time-accurate numerical simulations. Moreover, a detailed model of the actuator that uses Arbitrary Lagrangian-Eulerian (ALE) formulation to account for the movement of the actuator membrane is developed. This model, based on the governing numbers of the flow, is used to conduct the numerical analyses.

      The flows obtained in both configurations are noticeably different and three-dimensional for almost all the Reynolds numbers considered. The jet in the slotted configuration is formed by a pair of vortices that undergo turbulent transition and eventually coalesce into the jet. The external flow is dominated by two major recirculation structures that find their counterparts inside the actuator cavity. A new vortical structure, observed in confined slotted jets, appears as an interaction of the synthetic jet flow with the bottom wall and results in a change on the jet’s heat transfer mechanisms. On the other hand, the jet in the circular configuration presents three different flow regions that have been identified according to the literature: the main vortex ring, the trailing jet and the potential core. In this case, the external flow is dominated by the main vortex ring and the trailing jet, thus presenting a different morphology and heat transfer behavior than the slotted configuration. A detailed analysis of the vortex trajectories has shown that the advected vortices on the circular configuration reach the impingement before their slotted counterparts. Distributions of turbulent kinetic energy at the expulsion and vortex swirl and shear strength have revealed that the flow on the circular jet is mostly concentrated near the jet centerline, while it is more spread for the slotted configuration. For these reasons, at the same jet ejection velocity and actuator geometry, synthetic jet formation on the circular configuration can occur at higher frequencies than on the slotted configuration.

      The analysis of the synthetic jet outlet temperature has shown that assuming a uniform profile is reasonable if the Reynolds number is high enough. Moreover, the outlet jet temperature is significantly higher than the cold plate temperature. The two configurations present different impinging behaviors due to the differences on the flow. Heat transfer analysis on the hot wall has revealed that the circular configuration reaches a higher heat transfer peak than the slotted configuration, however, heat transfer decays faster in the circular configuration when moving away from the jet centerline. Eventually, correlations for the heat transfer at the hot wall and the outlet temperature with the Reynolds number are proposed. They can be useful to include the cavity effects when using simplified models that do not account for actuator cavity.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno