From single-core CPUs to detachable compute accelerators, supercomputers made a tremendous progress by using available transistors on chip and specializing hardware for a given type of computation. Today, compute nodes used in HPC employ multi-core CPUs tailored for serial execution and multiple accelerators (many-core devices or GPUs) for throughput computing. However, designing next-generation HPC system requires not only the performance improvement but also better energy efficiency. Current trend of reaching exascale level of computation asks for at least an order of magnitude increase in both of these metrics.
This thesis explores HPC-specific optimizations in order to make better utilization of the available transistors and to improve performance by transparently executing parallel code across multiple GPU accelerators. First, we analyze several HPC benchmark suites, compare them against typical desktop applications, and identify the differences which advocate for proper core tailoring. Moreover, within the HPC applications, we evaluate serial and parallel code sections separately, resulting in an Asymmetric Chip Multiprocessor (ACMP) design with one core optimized for single-thread performance and many lean cores for parallel execution. Our results presented here suggests downsizing of core front-end structures providing an HPC-tailored lean core which saves 16% of the core area and 7% of power, without performance loss.
Further improving an ACMP design, we identify that multiple lean cores run the same code during parallel regions. This motivated us to evaluate the idea where lean cores share the I-cache with the intent of benefiting from mutual prefetching, without increasing the average access latency. Our exploration of the multiple parameters finds the sweet spot on a wide interconnect to access the shared I-cache and the inclusion of a few line buffers to provide the required bandwidth and latency to sustain performance. The projections presented in this thesis show additional 11% area savings with a 5% energy reduction at no performance cost. These area and power savings might be attractive for many-core accelerators either for increasing the performance per area and power unit, or adding additional cores and thus improving the performance for the same hardware budget.
Finally, in this thesis we study the effects of future NUMA accelerators comprised of multiple GPU devices. Reaching the limits of a single-GPU die size, next-generation GPU compute accelerators will likely embrace multi-socket designs increasing the core count and memory bandwidth. However, maintaining the UMA behavior of a single-GPU in multi-GPU systems without code rewriting stands as a challenge. We investigate multi-socket NUMA GPU designs and show that significant changes are needed to both the GPU interconnect and cache architectures to achieve performance scalability. We show that application phase effects can be exploited allowing GPU sockets to dynamically optimize their individual interconnect and cache policies, minimizing the impact of NUMA effects. Our NUMA-aware GPU outperforms a single GPU by 1.5×, 2.3×, and 3.2× while achieving 89%, 84%, and 76% of theoretical application scalability in 2, 4, and 8 sockets designs respectively. Implementable today, NUMA-aware multi-socket GPUs may be a promising candidate for performance scaling of future compute nodes used in HPC.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados