Ayuda
Ir al contenido

Dialnet


Resumen de Lagrangian modeling of reactive transport in heterogeneous porous media

Guillem Solé Marí

  • Fluid flow, solute transport, and chemical reactions in porous media are highly relevant for multiple applications and in several fields of knowledge. Aquifers are a typical example of porous media, but many others exist, like for instance biological tissues or wastewater treatment filters. Modeling and simulation of transport processes in porous media can be done through Lagrangian methods, which have certain advantages with respect to classical Eulerian methods. Among these advantages, a key one is that the solution of the advective transport term does not generate any numerical dispersion or instabilities, not even in those cases that are strongly dominated by advection, as opposed to what happens with classical Eulerian methods. However, the incorporation of chemical reaccions in the Lagrangian modeling context involves additional challenges and considerations with respect to conservative transport modeling. In this thesis, which is presented as a compendium of publications, new techniques are developed for modeling reactive transport of solutes in porous media from a Lagrangian perspective. Throghout the thesis, two different types of numerical particles are studied: mass-particles and fluid-particles. In both cases, continuum-scale dispersion (or at least part of it) is represented by random walks of numerical particles. Also in both cases, reactive transport simulations require interaction between nearby particles, either for directly computing reactions (when mass-particles are used) or for exchanging solutes (in the fluid-particle case). For this reason, a large part of this thesis revolves around the study of kernel functions, whose purpose is to mathematically represent the support volume of (and interaction between) particles. In this thesis it is shown that these functions, optimized using statistical theories of Kernel Density Estimation (KDE), may be used to simulate all kinds of nonlinear reactions with the mass-particle method known as Random Walk Particle Tracking (RWPT). Then, a new approach is developed for locally optimizing the particles' support volume (represented by the kernel bandwidth), such that it adapts its size and shape in time and space to minimize error. Thereafter, this technique is implemented in a hybrid manner in combination with a spatial discretization (binning) to improve its computational efficiency and to allow the incorporation of boundary conditions. Regarding fluid-particles, in this thesis it is shown that two methods that exist in Lagrangian modeling literature (Smoothed Particle Hydrodynamics or SPH, and Mass Transfer Particle Tracking) are mathematically equivalent, and they only differ in the choice of kernel used for the solute exchange between particles, which simulates dispersive transport. Finally, a novel Lagrangian fluid-particle method is developed, with an algorithm based on Multi-Rate Interaction by Exchange with the Mean (MRIEM), which enables to account for local-scale concentration fluctuation effects, as well as their generation, transport and decay. The method is shown capable of reproducing experimental results of reactive transport in a porous medium with locally mixing-limited conditions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus