The revolution sparked by photonic applications during the last decades has made its mark in society, as we currently know it. Clear examples of this impact are patent in, for instance, the colossal worldwide data traffic generated by the use of the Internet or the widespread utilization of some biomedical techniques for diagnostic or surgical purposes, which could not be understood without the ceaseless development of optical systems. The necessity of combining and miniaturizing these systems to enable advanced functionalities gave birth to the development of photonic integrated circuits (PICs), which is the main framework within which this thesis began to take shape. Along these lines, we noticed restricted limitations in terms of flexibility or reconfigurability inherent to the wired-based nature of most PIC implementations carried out so far. In the case of plasmonic circuitry, there are additional shortcomings arising from the prohibitive losses of metallic waveguides at very high frequencies. The inclusion of wireless structures (mostly based on plasmonic nanoantennas) at the photonic layer emerged to mitigate these limiting losses, also opening new research avenues. However, these devices still presented poor performances as purely radiating elements in the far-field regime. In order to overcome these lacks, in this work, we introduced a novel version to wireless approaches at the nanoscale in what we called on-chip wireless silicon photonics.
This new concept was built upon the use of CMOS-compatible silicon-based nanoantennas, which constitute the key enabling structures of a diverse catalogue of applications in photonic communication networks or ultra-integrated sensors as well as for interfacing advanced dielectric-plasmonic systems. In the scope of communications, thanks to the easiness to tailor the antenna directivity, we were able to experimentally demonstrate on-chip data transmission flows in reconfigurable networks for the first time (by using highly directive antennas) or to develop dynamically tailor-made interference patterns to create focused spots at will on a 2D arrangement (enabled by antennas with a lower directivity). On the other hand, in the field of biosensing, we experimentally implemented a dielectric antenna-based lab-on-a-chip device for microparticle classification with state-of-the-art performance, which included the most compact optical subsystem demonstrated so far. Finally, we were able to efficiently interface silicon-based antennas to plasmonic systems to develop new advanced functionalities at the nanoscale, by putting together the advantages of on-chip wireless silicon photonics for on-chip communications, beam-shaping tailoring or lab-on-a-chip sensing with the advantages of plasmonics for light concentration and manipulation.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados