Ayuda
Ir al contenido

Dialnet


Resumen de Aplicación de la geometría fractal en las ciencias de la tierra

C. Paredes-Bartolomé

  • El estudio de las diversas metodologías para la medida, en primera instancia, y el entendimiento, en segunda, de los cuerpos y comportamientos complejos que se observan en la naturaleza que nos rodea, son abordados en esta tesis desde el punto de vista de la geometría fractal. Este estudio abarca, dentro de lo posible, un amplio rango, sobre diferentes dimensiones tipológicas, de fenómenos que son posibles encontrar en la investigación, dentro de la rama de las ciencias de la tierra, que es la Hidrología Subterránea. Dimensiones que van desde la que corresponde a la medida de un punto (cero), nubes de puntos, hasta las distribuciones en el espacio de masa (tres); pasando incluso por el estudio de los comportamientos de las series temporales de sistemas diversos. Estos aspectos han sido analizados mediante técnicas fractales, aplicadas, según corresponda, a procesos espaciales o temporales. Estas técnicas, que han sido implementadas en una serie de códigos informáticos, algunos de los cuales se presentan, son del tipo denominado box-counting, mass-aggregation, line scaling method; y otras, más complejas, del tipo correlatorio espectral, o basadas en la utilización de la integral de correlación, son aplicadas sobre datos sintéticos, para su testeado, y sobre datos reales para su análisis y modelización fractal. El análisis fractal se descubre como una herramienta interesante para la conceptualización, discriminación y caracterización de fenómenos que desde el punto de vista clásico eran considerados como inclasificables y estocásticos. La modelización fractal resulta ser una técnica que permite crear simulaciones que sean aparentemente más realistas y semejantes a las texturas encontradas en la naturaleza. Entre otros resultados, en esta tesis se han definido las metodologías correctas de análisis fractal, y de generación de fractales, que se deben de aplicar a, por ejemplo, medios fracturados, series temporales, campos aleatorios, etc., para su caracterización fractal o su simulación. En cuanto a los estudios concretos aplicados sobre los datos procedentes de sistemas kársticos, los resultados permiten caracterizar, y en algunos casos, simular estos medios en base tanto a sus comportamientos temporales como espaciales, lo cual permite intuir que existe cierta relación entre ambas dimensiones fractales, la espacial y la temporal.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus