In the siderurgical sector, the steel scrap is the most important raw material in electric steelmaking,contributing between 70% of the total production costs. It is well-known how the degree of which thescrap mix can be optimized, and also the degree of which the melting operation can be controlled andautomated, is limited by the knowledge of the properties of the scrap and other raw-materials in thecharge mix.Therefore, it is of strategic importance having accurate information about the scrap composition of thedifferent steel scrap types. In other words, knowing scrap characteristics is a key point in order to managethe steel-shop resources, optimize the scrap charge mix/composition at the electric arc furnace (EAF),increase the plant productivity, minimize the environmental footprint of steelmaking activities and tohave the lowest total cost of ownership of the plant.As a main objective of present doctoral thesis, the doctorate will provide new tools and methods of scrapcharacterization to increase the current recycling ration, through better knowledge of the quality of thescrap, and thus go in the direction of a 100% recycling ratio. In order to achieve it, two main workinglines were developed in present research. Firstly, it was analysed not only the different existingmethodologies for scrap characterization and EAF process optimization, but also to develop new methodsor combination of existing, Secondly, it was defined a general recommendations guide for implementingthese methods based on the specifics of each plant.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados