Ayuda
Ir al contenido

Dialnet


Resumen de Priorización de genes y búsqueda de dianas terapéuticas por medio de herramientas informáticas y técnicas de aprendizaje automatizado en cáncer de mama

Andrés López Cortés

  • español

    El cáncer de mama (CM) es la principal causa de muerte relacionada a neoplasias en mujeres y es el tipo de cáncer más diagnosticado a nivel mundial. CM es una enfermedad heterogénea en donde están envueltos diversos factores como alteraciones genómicas, desregulación de la expresión de proteínas, alteración de cascadas genéticas, desregulación hormonal, determinantes ambientales y etnicidad. A pesar de los grandes avances tecnológicos y científicos en los últimos años, la comprensión de los procesos moleculares, la identificación de nuevas dianas terapéuticas y la predicción de proteínas envueltas inmunoterapia, metástasis, y unión al ARN es indispensable para el desarrollo de fármacos y la aplicación de la medicina de precisión en la práctica clínica. La tesis aquí propuesta plantea el desarrollo de una estrategia consenso altamente eficiente en el reconocimiento de genes y proteínas asociadas al CM; la validación oncológica de dichos genes y proteínas priorizadas mediante la estrategia OncoOmics que consistió en el análisis de bases de datos experimentales de alta relevancia a nivel mundial; la identificación de mutaciones oncogénicas y fármacos indispensables para el desarrollo y aplicación de la medicina de precisión; y la predicción de proteínas de CM asociadas a inmunoterapia, metástasis y unión al ARN mediante diversas herramientas informáticas y métodos de inteligencia artificial. Todos los resultados se publicaron en revistas internacionales de importante factor de impacto.

  • English

    Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. BC is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Despite the technological and scientific advances in recent years, an understanding of molecular processes, the identification of new therapeutic targets and the prediction of proteins involved in immunotherapy, metastasis, and RNA binding is essential for drug development and application of precision medicine in clinical practice. The current thesis proposes the development of a high efficient consensus strategy in the recognition of genes and proteins associated with BC; the oncological validation of these prioritized genes and proteins using the OncoOmics strategy, which consisted of the analysis of outstanding experimental databases; the identification of oncogenic mutations and essential drugs for the development and application of precision medicine; and the prediction of BC proteins associated with immunotherapy, metastasis and RNA-binding using bioinformatics tools and artificial intelligence methods. All results were published in international journals with a significant impact factor.

  • galego

    O cancro de mama (CM) é a principal causa de morte relacionada con enfermidades malignas en mulleres e é o tipo de cancro máis diagnosticado a nivel mundial. A CM é unha enfermidade heteroxénea onde interveñen varios factores, como alteracións xenómicas, desregulación da expresión proteica, alteración de cascadas xenéticas, desregulación hormonal, determinantes ambientais e etnia. A pesar dos grandes avances tecnolóxicos e científicos dos últimos anos, a comprensión dos procesos moleculares, a identificación de novas dianas terapéuticas e a predición de proteínas implicadas na inmunoterapia, metástase e unión ao ARN é fundamental para o desenvolvemento de fármacos e aplicación da medicina de precisión na práctica clínica. Esta tese propón o desenvolvemento dunha estratexia de consenso altamente eficiente no recoñecemento de xenes e proteínas asociadas a CM; a validación oncolóxica destes xenes e proteínas prioritarias mediante a estratexia OncoOmics, que consistiu na análise de bases de datos experimentais altamente relevantes en todo o mundo; a identificación de mutacións oncogénicas e fármacos esenciais para o desenvolvemento e aplicación da medicina de precisión; e a predición de proteínas CM asociadas á inmunoterapia, metástase e unión ao ARN usando diversas ferramentas informáticas e métodos de intelixencia artificial. Todos os resultados publicáronse en revistas internacionais cun importante factor de impacto.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus