Ayuda
Ir al contenido

Dialnet


Resumen de Modelado y simulación para la predicción de explosiones en espacios confinados

Daniel Cortés Blasco

  • CONTEXTO Y MOTIVACIÓN Los incendios en recintos confinados son un tipo de emergencia que involucra a bomberos cuyas vidas a veces se ponen en peligro. En cualquier incendio confinado, el equipo de emergencia puede encontrar dos tipos de ambientes de combustión, ventilados o infra-ventilados. El comportamiento cambiante de este escenario depende de múltiples factores como el tamaño del recinto, la ventilación o el combustible involucrado, entre otros. Sin embargo, la dificultad de manejar este tipo de situaciones junto con el potencial error humano sigue siendo un desafío sin resolver para los bomberos en la actualidad. En ocasiones, si se dan las condiciones adecuadas, pueden aparecer los fenómenos, extremadamente peligrosos, que son estudio de este trabajo (flashover y backdraft). Por lo tanto, existe una gran demanda de nuevas técnicas y tecnologías, así como avances científicos y tecnológicos para abordar este tipo de emergencias que amenazan la vida y puede causar graves daños estructurales. A lo anterior hay que añadir que, la incorporación de cámaras térmicas en los servicios de extinción de incendios y salvamentos supone un gran avance que puede ayudar a prevenir estos tipos de fenómenos en tiempo real utilizando técnicas de inteligencia artificial.

    DESARROLLO TEÓRICO Una vez finalizado el análisis del estado del arte, se llega a la conclusión de que no hay suficiente conocimiento (hasta dónde se ha investigado) sobre el fenómeno del backdraft. Por este motivo, a partir de este punto la investigación se centra en el fenómeno del flashover.

    Debido a la complejidad de obtener una base de datos de casos reales relacionados con estos fenómenos, se ha adoptado por utilizar técnicas de modelado y simulación. En esta tesis se proponen dos métodos para crear y validar un conjunto de datos sintéticos. El primer método se basa en la obtención de las imágenes sintéticas a partir de los datos de simulaciones obtenidas con un software de simulación de fluidos computacional (CFD, Computational Fluid Dynamics). Para validar el conjunto de datos sintéticos se propone un segundo método que consiste en comparar cuantitativamente los datos obtenidos con dos experimentos reales haciendo uso de la distancia Wasserstein.

    Finalmente, para predecir el fenómeno flashover se propone un método de predicción usando el conjunto de datos sintéticos creado. Para probar el modelo de predicción resultante se realizan dos experimentos reales.

    CONCLUSIÓN De los resultados obtenidos se concluye que es posible predecir el fenómeno flashover con el método propuesto.

    BIBLIOGRAFÍA CONSULTADA [1] CFAST, Fire Growth and Smoke Transport Modeling | NIST [2] FAST ver. 3.1.6 developed by National Institute of Standards and Technology (NIST) [3] FDS-fire dynamics simulator, NIST [4] National Fire Protection Asociation. xxvii, xxix [5] OpenCV. https://opencv.org/ [6] POT:Python Optimal Transport.

    [7] Python 3.7.7 Documentation. https://docs.python.org/3.7/ [8] World Fire Statistics. Tech. rep., 2018. xvii, xxii [9] Aravind Kumar, A., Kumar, R., and Jain, S. Application of Computational Fluid Dynamics for Different Fire Strengths in a Compartment Using Combustion Modelling. Fire Sci. Technol. 33, 2 (2014), 35–46 [10] Babrauskas, V. Estimating room flashover potential. Fire Technol. 17, 1 (feb 1981), 94–103.

    [11] Babrauskas, V., Peacock, R. D., and Reneke, P. A. Defining flashover for fire hazard calculations: Part II. Fire Saf. J. 38, 7 (nov 2003), 613–622.

    [12] Baum, L. B., and Eagon, J. A. An inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology. Bull. Am. Math. Soc. 73, 3 (1967), 360–363.

    [13] Baum, L. E., and Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. Ann. Math. Stat. 37, 6 (dec 1966), 1554–1563.

    [14] Beard, A. N. Fire Models and Design. Fire Saf. J. 28 (1997), 117–138.

    [15] Bishop, S. R., and Drysdale, D. D. Fires in compartments: the phenomenon of flashover. R. Soc. (1998).

    [16] Bourne, D. P. A Brief Introduction to Optimal Transport Theory. 1–12.

    [17] Chen, A., Francis, J., Dong, X., and Chen, W. An experimental study of the rate of gas temperature rise in enclosure fires. Fire Saf. J. 46, 7 (oct 2011), 397–405.

    [18] Chow, W. K. A Comparison of the Use of Fire Zone and Field Models for Simulating Atrium Smoke-filling Processes. Fire Saf. J. Copyr. 25 (1995), 337–353.

    [19] Chow, W.-K. Evaluation of the Field Model, Fire Dynamics Simulator, for a Specific Experimental Scenario Combustion Chemistry View project. Artic. J. Fire Prot. Eng. (2005).

    [20] Cortés, D., Gil, D., and Azorín, J. Revisión del modelado y simulación para la predicción de explosiones en incendios de espacios confinados. In Res. Adv. Technol. Fire Saf. (Cantabria, 2017), Universidad de Cantabria, Ed.

    [21] Cortés, D., Gil, D., and Azorín, J. Fire Science Living Lab for Flashover Prediction. Proceedings 31, 1 (nov 2019), 87. 131176 [22] Cortés, D., Gil, D., Azorín, J., Vandecasteele, F., and Verstockt, S. A Review of Modelling and Simulation Methods for Flashover Prediction in Confined Space Fires. Appl. Sci. 10, 16 (aug 2020), 5609.

    [23] Evegren, F., and Wickström, U. New approach to estimate temperatures in pre-flashover fires: Lumped heat case. Fire Saf. J. 72 (feb 2015), 77–86.

    [24] Fleischmann, C. M., and Chen, Z. Defining the difference between backdraft and smoke explosions. Procedia Eng. 62 (2013), 324–330.

    [25] Fleischmann, C. M., Pagni, P. J., and Williamson, R. B. Quantitative Backdraft Experiments. Fire Saf. Sci. 4 (1994), 337–348.

    [26] Forney, G. D. The Viterbi Algorithm. Proc. IEEE 61, 3 (1973), 268–278.

    [27] Gojkovic, D. Initial Backdraft Experiments. Tech. rep.

    [28] Grimwood, P., and Desmet, K. TACTICAL FIREFIGHTING. Tech. rep., 2003.

    [29] Grosshandler, W. L. RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion, Environment. Tech. rep., 1993.

    [30] Grosshandler, W. L. RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion, Environment. Tech. rep., 1993.

    [31] Guorong Xuan, Wei Zhang, and Peiqi Chai. EM algorithms of Gaussian mixture model and hidden Markov model. In Proc. 2001 Int. Conf. Image Process. (Cat. No.01CH37205) (2001), vol. 1, IEEE, pp. 145–148.

    [32] Horng, W. B., and Peng, J. W. Image-based fire detection using neural networks. Proc. 9th Jt. Conf. Inf. Sci. JCIS 2006 2006, January 2006 (2006).

    [33] Horvat, A., and Sinai, Y. Numerical simulation of backdraft phenomena. Fire Saf. J. 42, 3 (apr 2007), 200–209.

    [34] Huo, R., Jin, X. H., Shi, C. L., and Chow, W. K. ON THE EQUATIONS FOR FLASHOVER FIRE IN SMALL COMPARTMENTS. Int. J. Eng. Performance-Based Fire Codes 3, 4 (2001), 158–165.

    [35] Huseynov, J., Boger, Z., Shubinsky, G., and Baliga, S. Optical flame detection using large-scale artificial neural networks. In Proceedings. 2005 IEEE Int. Jt. Conf. Neural Networks, 2005. (2005), vol. 3, IEEE, pp. 1959–1964.

    [36] Huseynov, J. J., and Baliga, S. B. Optical infrared flame detection system with neural networks. In Proc. SPIE - Int. Soc. Opt. Eng. (sep 2007), F. T. Luk, Ed., p. 66970L.

    [37] Ingberg, S. H. Tests of the Severity of Building Fires. Q. Natl. Fire Prot. Assoc. 22 (1928), 43–61.

    [38] Johnson, R., Wu, H., and Ihme, M. A general probabilistic approach for the quantitative assessment of LES combustion models. Combust. Flame 183 (sep 2017), 88–101.

    [39] Kacem, A., Lallemand, C., Giraud, N., Mense, M., De Gennaro, M., Pizzo, Y., Loraud, J.-C., Boulet, P., and Porterie, B. A small-world network model for the simulation of fire spread onboard naval vessels. Fire Saf. J. 91, February (jul 2017), 441–450.

    [40] Kapaku, R. K., Rankin, B. A., and Gore, J. P. Quantitative imaging of radiation from soot and carbon dioxide in a turbulent ethylene jet diffusion flame. Combust. Flame 162, 10 (apr 2015), 3704–3710.

    [41] Kawagoe, K. Fire Behavior In Rooms, report 27 ed. No. 27. Building Research Institute, Ministry Construction, Of, Tokyo, 1958.

    [42] Kim, J.-H., and Lattimer, B. Y. Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Saf. J. 72 (feb 2015), 40–49.

    [43] Kim, J.-h., Sung, Y., and Lattimer, B. Y. Bayesian Estimation based Real-Time Fire-Heading in Smoke-Filled Indoor Environments Using Thermal Imagery. IEEE International Conference on Robotics and Automation (ICRA), pp. 5231–5236.

    [44] Kim, W. H. DSP Embedded Early Fire Detection Method Using IR Thermal Video. KSII Trans. Internet Inf. Syst. 8, 10 (oct 2014), 3475–3489.

    [45] Lakhmi C. Jain, and Lim, C. P. Handbook on decision making. Springer, 2010.

    [46] Lambert, K. Backdraft: fire science and firefighting, a literature review. Tech. rep.

    [47] Lee, E. W., Lee, Y., Lim, C., and Tang, C. Application of a noisy data classification technique to determine the occurrence of flashover in compartment fires. Adv. Eng. Informatics 20, 2 (apr 2006), 213–222.

    [48] Lee, E. W. M. An incremental adaptive neural network model for online noisy data regression and its application to compartment fire studies. Appl. Soft Comput. 11, 1 (jan 2011), 827–836.

    [49] Lee, E. W. M., Yuen, R. K. K., Lo, S. M., and Lam, K. C. Probabilistic inference with maximum entropy for prediction of flashover in single compartment fire. Adv. Eng. Informatics (2001). 3 [50] Lee, E. W. M., Yuen, R. K. K., Lo, S. M., Lam, K. C., and Yeoh, G. H. A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire. Fire Saf.

    J. 39 (2004), 67–87.

    [51] Lee, Y.-P., Delichatsios, M. A., and Silcock, G. Heat fluxes and flame heights in façades from fires in enclosures of varying geometry. In Proc. Combust. Inst. (jan 2007), vol. 31, pp. 2521–2528.

    [52] Mackay, D., Barber, T., and Leonardi, E. CFD Model of a Specific Fire Scenario. 16th Australas. Fluid Mech. Conf. (2007), 5.

    [53] Markov, A. A. Essai d’une recherche statistique sur le texte duroman “Eugene Onegin” illustrant la liaison des epreuve en chain (‘Example of a statistical investigation of the text of “Eugene Onegin” illustrating the dependence between samples in chain’). Izvistia Imp. Akad. Nauk (Bulletin l’Academie Impériale des Sci. dé St.- Petersbourg), 7 (1913), 153–162.

    [54] Martin, S. B., and Wiersma, S. J. An Experimental Study of Flashover Criteria for Compartment Fires. Tech. rep., Menlo Park, California, 1979.

    [55] McCaffrey, B. J., Quintiere, J. G., and Harkleroad, M. F. Estimating room temperatures and the likelihood of flashover using fire test data correlations. Fire Technol. 17, 2 (may 1981), 98–119. 22 [56] Mcgrattan, K. B., Baum, H. R., and Rehm, R. G. Large Eddy Simulations of Smoke Movement. Tech. rep., 1998.

    [57] Merci, B., and Beji, T. Fluid Mechanics Aspects of Fire and Smoke Dynamics in Enclosures, department ed. CRC Press/Balkema, Ghent, Belgium, 2016. xvii, xxiii, 8, 142, 146 [58] Merel Ruiter, M., and Jana Domrose, M. Fatal residential fires in Europe. Tech. rep., Institute for Safety Fire Service Academy, 2018. xxvii, xxix, 5, 6, 137, 138 [59] Monge., G. M´emoire sur la th´eorie des d´eblais et des remblais. In Histoire de l’Acad´emie Royale des Sciences de Paris. 666–704. 61 [60] National Fire Protection Association. NFPA 921: Guidelines for Fire and Explosion Investigation, 2011. xxvii, xxix [61] Newale, A. S., Rankin, B. A., Lalit, H. U., Gore, J. P., and McDermott, R. J. Quantitative infrared imaging of impinging turbulent buoyant diffusion flames. Proc. Combust. Inst. 35, 3 (2015), 2647–2655. 36 [62] Park, J.-W., Oh, C. B., Choi, B. I., and Han, Y. S. Computational visualization of the backdraft development process in a compartment. J. Vis. 18, 1 (feb 2015) [63] Park, J.-W., Oh, C. B., Han, Y. S., and Do, K. H. Computational study of backdraft dynamics and the effects of initial conditions in a compartment. J. Mech. Sci. Technol. 31, 2 (feb 2017), 985–993.

    [64] Peacock, R. D., Reneke, P. A., Bukowski, R. W., and Babrauskas, V. Defining flashover for fire hazard calculations. Fire Saf. J. 32 (1999), 331–345.

    [65] Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 77, 2 (1989), 257–286.

    [66] Rankin, B. A., Ihme, M., and Gore, J. P. Model-based imaging of mid-infrared radiation from a turbulent nonpremixed jet flame and plume. In 8th U. S. Natl. Combust. Meet. (apr 2013).

    [67] Rankin, B. A., Ihme, M., and Gore, J. P. Quantitative modelbased imaging of mid-infrared radiation from a turbulent nonpremixed jet flame and plume.

    [68] Steckler, K., Baum, H., and Quintiere, J. Fire induced flows through room openings-flow coefficients. In Symp. Combust. (jan 1985), vol. 20, pp. 1591–1600.

    [69] Sudheer, S., Saumil, D., and Prabhu, S. Physical experiments and Fire Dynamics Simulator simulations on gasoline pool fires. J. Fire Sci. 31, 4 (jul 2013), 309–329.

    [70] Takeda, H., Nakaya, I., and Akita, K. Experimental Study of Small Enclosure Fire with Liquid Fuel. In Present. Second Jt. Meet. U.S.-Japan Nat. Resour. Panel Fire Res. Safety, Tokyo, Oct. 1976.(1976).

    [71] Thomas, P., Bullen, M., Quintiere, J., and McCaffrey, B. Flashover and instabilities in fire behavior. Combust. Flame 38 (jan 1980), 159–171.

    [72] Thomas, P. H. THE FIRE RESISTANCE REQUIRED TO SURVIVE A BURN OUT. Tech. rep., 1970.

    [73] Thomas, P. H. Testing products and materials for their contribution to flashover in rooms. Fire Mater. 5, 3 (sep 1981), 103–111.

    [74] Thureson, P. Eurific – Cone Calorimater Test Results Project 4 of the Eurefic fire research programme. SP Swedish Natl. Test. Res. Inst. Fire Technol. (1991).

    [75] Vandecasteele, F., Merci, B., Jalalvand, A., and Verstockt, S. Object localization in handheld thermal images for fireground understanding. In SPIE 10214 (may 2017), P. Bison and D. Burleigh, Eds., p. 1021405.

    [76] Viterbi, A. J., and Odenwalder, J. P. Further Results on Optimal Decoding of Convolutional Codes. IEEE Trans. Inf. Theory 15, 6 (1969), 732–734. 93 [77] Waterman, T. E. Room flashover—Criteria and synthesis. Fire Technol. 4, 1 (feb 1968), 25–31.

    [78] Weng, W. Experimental study of back-draft in a compartment with openings of different geometries. Combust. Flame 132, 4 (mar 2003), 709–714.

    [79] Weng, W., and Fan, W. Critical condition of backdraft in compartment fires: a reduced-scale experimental study. J. Loss Prev. Process Ind. 16, 1 (jan 2003), 19–26.

    [80] Wickström, U., Anderson, J., and Sjöström, J. Measuring Incident Heat Flux and Adiabatic Surface Temperature with Plate Thermometers in Ambient and High Temperatures Measuring Incident Heat Flux and Adiabatic Surface Temperature with Plate Thermometers in Ambient and High Temperatures. xix [81] Wu, C. L., and Carvel, R. An experimental study on backdraught: The dependence on temperature. Fire Saf. J. 91, February (jul 2017), 320–326.

    [82] Yeoh, G., Yuen, R., Chueng, S., and Kwok, W. On modelling combustion, radiation and soot processes in compartment fires. Build. Environ. 38, 6 (jun 2003), 771–785.

    [83] Yeoh, G. H., Yuen, R. K. K., Chen, D. H., and Kwok, W. K. COMBUSTION AND HEAT TRANSFER IN COMPARTMENT FIRES. Numer. Heat Transf. Part A Appl. 42, 1-2 (jul 2002), 153–172.

    [84] Yeoh, G. H., Yuen, R. K. K., Lo, S. M., and Chen, D. H. On numerical comparison of enclosure fire in a multi-compartment building. Fire Saf. J. 38 (2003), 85–94.

    [85] Yuen, A. C. Y., Yeoh, G. H., Alexander, B., and Cook, M. Fire scene investigation of an arson fire incident using computational fluid dynamics based fire simulation. Build. Simul. 7, 5 (oct 2014), 477–487.

    [86] Yuen, R. K., Lee, E. W., Lo, S., and Yeoh, G. Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis. Fire Saf. J. 41, 6 (sep 2006), 478–485.

    [87] Yun, K., Bustos, J., and Lu, T. Predicting Rapid Fire Growth (Flashover) Using Conditional Generative Adversarial Networks. Electron. Imaging 2018, 9 (jan 2018), 127–1–127–4. 41, 42 [88] Zabetacis, M. G. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS. Washington, U.S. Dept Inter. Bureu Mines Bulletin 6 (1965). 25 [89] Zhao, G., Beji, T., and Merci, B. Application of FDS to Under-Ventilated Enclosure Fires with External Flaming. Fire Technol. 52, 6 (nov 2016), 2117–2142.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus