Several efforts have been made in experimental and theoretical research about shear to understand all the variables that influence the phenomenon. Nowadays, however, due to its complexity, the shear performance of structural concrete elements, especially those without any traditional transversal reinforcement, continue with no clear explanation of the problem. Uncertainty about the problem grows when new variables like fibres are incorporated into the shear study.
Research works have demonstrated the effectiveness of steel fibre in improving the mechanical properties of concrete elements. Experimental results reveal that steel fibres have proven effective in improving shear resistance, and they confer some concrete elements more ductility. In adequate amounts, steel fibres can completely or partially substitute traditional shear reinforcements. This is why international codes have included some requirements to take into account the action of fibres on the shear response of concrete elements. However, most recommendations and requirements for steel fibre-reinforced concrete (SFRC) were originally created.
New fibres with different materials properties and shapes, such as macrosynthetic fibres, are now available on the market. These fibres, some of which are made of polypropylene, are an alternative in the construction industry given their properties and final cost. Initially, polypropylene fibres were used to control shrinkage cracking. Nevertheless, in the last decade the chemical industry has created larger fibres with better surface shapes, which allows polypropylene fibres to meet the requirements of international codes so they can be used in structural elements.
Within this framework, the present PhD thesis aims to contribute to knowledge about fibre reinforced concrete (FRC), especially to study the effectiveness of polypropylene fibres when used as shear reinforcement. For this purpose, a literature review of the material, polypropylene fibre-reinforced concrete (PFRC) and its structural applications is first carried out. This study also discusses the parameters that affect the shear behaviour of traditional concrete and FRC.
In order to evaluate the effectiveness of polypropylene fibres in shear, three experimental campaigns are presented. Each campaign represents a different level of study. The first corresponds to the material level, where the shear behaviour of PFRC is evaluated by push-off specimens. The second level involves studying shear in real scale elements. For this purpose, shear critical slender beams were manufactured and tested. The last level corresponds to real application of polypropylene fibres to act as shear reinforcement. In this campaign, deep hollow core slabs, with real sections and supports conditions, were tested. At each level, the shear behaviour of PFRC was evaluated against control reinforced concrete specimens, which were also tested during each campaign
© 2001-2024 Fundación Dialnet · Todos los derechos reservados