Ayuda
Ir al contenido

Dialnet


Resumen de Design behaviors: programming the material world for responsive architecture

Areti Markopoulou

  • The advances of material science, coupled with computation and digital technologies, and applied to the architectural discipline have brought to life unprecedented possibilities for the design and making of responsive, collectively created and intelligent environments. Over the last two decades, research and applications of novel active materials, together with digital technologies such as Ubiquitous Computing, Human-Computer Interaction, and Artificial Intelligence, have introduced a model of Materially Responsive Architecture that presents unique possibilities for designing novel performances and behaviors of the architectural Beyond the use of mechanical systems, sensors, actuators or wires, often plugged into traditional materials to animate space, this dissertation proves that matter itself, can be the agent to achieve monitoring, reaction or adaptation with no need of any additional mechanics, electrical or motorized systems. Materials, therefore, become bits and information uniting with the digital world, while computational processes, such as algorithmic control, circular feedback, input or output, both drive and are driven by the morphogenetic capacities of matter, uniting, therefore, with the material world.

    Through the applications and implications of Materially Responsive Architecture we are crossing a threshold in design where physicality follows and reveals information through time and through dynamic configurations. Design is not limited to a finalised form but rather associated to a performance, where the final formal outcome consists in a series of animated and organic topologies rather than static geometries and structures. This new paradigm, is referred to, in this thesis, as the Design Behaviors paradigm (in the double sense of "behaviors of design" and "designing behaviors"), and is characterized by unique exchanges and dialogues between users and the environment, facilitated by the conjunction of human, material and computational intelligence.

    Buildings, objects and spaces are able to reconfigure themselves, in both atomic and macro scale, to support environmental changes and users' needs, behavioral and occupational patterns. At the same time the Design Behaviors paradigm places not only matter and the environment at the center of design and morphogenesis, but also the users, that become active participants of their built environment and play the final creative role. This paradigm shift, boosts new relations among the human's perception and body and the inhabited space.

    The new design paradigm is also a new cultural one, in which statics, repetition and Cartesian grids, traditionally related with safety, orientation and comfort, give way to motion, unpredictability and organic principles of evolution.

    Materially Responsive Architecture and the Design Behaviors paradigm define uniquely enhanced "environments" and "ecologies" where human, nature, artifice and technology collectively and evolutionally co-exist within a framework of increased consciousness and awareness.

    This thesis argues that, while there is no doubt that our future cities will consist in an extensive layer of distributed sensors, actuators and digital interfaces, they will also consist in an additional layer of novel materials, that are dynamic and soft, rather than rigid and hard, able to sense as sensors, actuate as motors, and be programmed as a software. The new materiality of our cities relies on the advances of material science, coupled with the cybernetic and computational power, and can be actuated by the environment to change states (Re-Active Matter), can be controlled by the users to respond (Co-Active Matter), and eventually can be designed and programmed to learn and evolve as living organisms do (Self-Active Matter). The physical space of the city is, thus, the seamless intertwining of digital and material content, becoming an active agent in the dynamic relationship between the environment and humans.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus