Ayuda
Ir al contenido

Dialnet


Advanced techniques for the design and optimization of multi-band and reconfigurable microwave waveguide filters

  • Autores: Juan Carlos Melgarejo Lermas
  • Directores de la Tesis: Santiago Cogollos Borrás (dir. tes.), Vicente Enrique Boria Esbert (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jordi Mateu Mateu (presid.), José Ignacio Alonso Montes (secret.), Vittorio Tornielli Di Crestvolant (voc.)
  • Programa de doctorado: Programa de Doctorado en Telecomunicación por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The need for ever increasing data rate of modern communication systems has motivated companies in the space sector to exploit higher frequency bands, such as Ku, K and Ka, in order to offer wider bandwidths to their customers. However, as the frequency increases, the wavelength decreases, and all waveguide hardware becomes smaller and more sensitive to deviations from the ideal dimensions that normally occur when manufacturing the devices. In order to compensate for these deviations (or errors), tuning elements must then be added to the hardware and included in the design process.

      In this context, therefore, we focus on the investigation of novel design strategies for filters and multiplexers with the objective of including all necessary non-ideal factors in the design process. It is important to note in this context that, once the filters are manufactured, the tuning elements are usually adjusted manually until the desired target performance has been achieved. However, successfully performing this task requires a considerable amount of time and very significant previous experience in tuning microwave filters. Consequently, an additional goal of our research work is to propose efficient and systematic tuning procedures so that anyone, regardless of their previous tuning experience, can successfully perform this difficult task.

      In addition to the increasing data rates, another current challenge of advanced communication systems is the ability to be reconfigured remotely to adjust to changes in costumer demands. The use of multi-function or reconfigurable devices is then an attractive possible solution. In this context, therefore, we also investigate new families of multi-band waveguide filters that can be used to accommodate several pass bands in the same filtering device. Furthermore, we also propose a new family of reconfigurable devices with several discrete states that can be easily controlled remotely.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno