Ayuda
Ir al contenido

Dialnet


Resumen de Fourier methods for modelling of instabilities and unsteady flows in turbomachinery

David Romera Hijano

  • Esta tesis presenta la formulación y validación de un novedoso Passage-Spectral Method (PSM) en el tiempo para aplicaciones de turbomaquinaria. El método propuesto proporciona un medio eficiente de aproximación de flujos con métodos espaciales de Fourier basados en bloques, tratando de facilitar un análisis eficiente para el diseño y optimización de flujos inestables y no simétricos, reduciendo el coste computacional de estas simulaciones y simplificando el estudio de perturbaciones no-estacionarias sin ninguna hipótesis sobre su periodicidad temporal.

    Mejorar el rendimiento del motor, reducir el coste de nuevos productos y cumplir con las regulaciones ambientales son áreas de gran interés para la industria de turbomaquinaria. Las soluciones de Computational Fluid Dynamics (CFD) en combinación con enfoques teóricos pueden mejorar el diseño del motor al ofrecer un método potente para comprender la complejidad de estos fenómenos físicos de flujo en estos sistemas. Sin embargo, se han encontrado con una serie de desafíos para problemas inestables y no simétricos en turbomáquinas, debido a la complejidad de algunas características tales como geométricas, condiciones de flujo e inestabilidades de rotación. La predicción de inestabilidades tridimensionales es un área de amplia importancia práctica y teórica en mecánica de fluidos. La identificación y caracterización de los mecanismos relacionados con este proceso debería mejorar los métodos de predicción y conducir a nuevas estrategias de control más eficientes, ambas de considerable importancia en flujos reales. Las simulaciones numéricas de flujos inestables y no simétricos se realizan normalmente utilizando geometrías de corona completa y códigos Unsteady Reynolds-averaged Navier-Stokes (URANS).

    En general, las perturbaciones de flujo no lineales en el tiempo y/ó en el espacio pueden identificarse y representarse mediante una serie discreta de Fourier siempre que sean periódicas. Esta tesis se centra en los desafíos que supone la simulación numérica de estos flujos complejos, proponiendo un método eficiente espacial de Fourier por bloques para aprovechar la periodicidad espacial de algunas perturbaciones no estacionarias. El nuevo método está destinado a problemas con una perturbación de longitud característica de onda corta con una de longitud superpuesta de onda larga que será transformada en series de Fourier. Este nuevo enfoque discretiza el dominio usando un número finito de bloques o pasajes, donde las variables de flujo en los límites supuestamente periódicos se actualizan continuamente usando los coeficientes espaciales de Fourier a través de un conjunto de bloques espaciados uniformemente. Primero, se describe la formulación y metodología para la ecuación de onda unidimensional. Se realiza una explicación detallada de cómo implementar esta nueva estrategia. La reconstrucción espectral por bloques hace posible resolver con precisión una amplia gama de armónicos espaciales y la interacción entre ellos, con el objetivo final de reproducir características de interés de flujo inestable en una gran escala de longitudes de onda con una reducción drástica en el número de pasajes necesarios, resolviendo numéricamente la inestabilidad de onda larga dentro de cada bloque sin necesidad de usar ninguna transformación por Fourier. El método es capaz a su vez de resolver una tercera familia de armónicos con el mismo conjunto de bloques, lo que hace que el método propuesto sea muy adecuado para problemas de turbomaquinaria.

    Posteriormente, el método se amplía al modelado de geometrías tridimensionales no simétricas y se implementa en un código de flujo compresible basado en volúmenes finitos. La tesis tiene como objetivo proporcionar evidencias sobre la comparación de los resultados del PSM propuesto y las simulaciones de corona completa para diferentes aplicaciones prácticas, estableciendo las limitaciones del nuevo enfoque. Este tipo de metodología es aplicable a la simulación de inestabilidades en compresores (entrada en pérdida) y las inestabilidades de longitud de onda larga que se pueden observar en la parte interna del disco y las cavidades debajo de la plataforma de turbinas y compresores donde las frecuencias asociadas se autoexcitan, lo que debería ser parte de la solución.

    El NASA rotor 67, que es un fan de baja relación de aspecto, ha sido elegido como vehículo de verificación del método propuesto debido a la existencia de datos experimentales y simulaciones numéricas de dominio público. El NASA rotor 67 bajo el efecto de condiciones de flujo de entrada limpias y distorsionadas se ha utilizado primero como caso de validación para demostrar la efectividad y viabilidad del método en un caso no simétrico en comparación con soluciones de corona completa. El objetivo es utilizar un número reducido de pasajes para capturar las perturbaciones no simétricas del flujo a gran escala durante el proceso de bloqueo en condiciones de funcionamiento distorsionadas, filtrando los armónicos más altos que podrían no ser de interés. La comparación entre el Passage-Spectral Method y la solución de corona completa muestra que se pueden obtener soluciones fiables con un número bajo de armónicos. Se muestra que el método es capaz de reproducir con precisión la solución de corona completa con algunos armónicos espaciales, capturando los rasgos característicos del flujo complejo inducido por la ruptura del vórtice de fuga de la punta. También se estudia la dependencia de la estabilidad aerodinámica de las palas del fan con el diámetro nodal y la amplitud de las perturbaciones de entrada y salida utilizando el potencial del método propuesto. El método se modifica a su vez para tratar de manera eficiente utilizando sólo un armónico espacial y luego se aplica para evaluar el efecto de las distorsiones de entrada y salida. A pesar de la complejidad de la distribución de la distorsión a la entrada o del número de estructuras o pilones en la salida, cualquier patrón de distorsión de entrada o salida puede descomponerse en series de Fourier. La aproximación espacial explícita de Fourier se explota para caracterizar la relevancia de cada diámetro nodal de las perturbaciones de salida en el proceso de parada del fan, y su estabilidad no lineal se estudia en una base armónico a armónico. La estabilidad del contenido de armónicos espaciales se puede evaluar por separado utilizando el PSM propuesto que filtra la contribución del resto de los modos circunferenciales de la perturbación impuesta, reteniendo solo tres pasajes.

    La última parte de la tesis proporciona otra aplicación del método numérico propuesto en configuraciones reales de turbomaquinaria. También se ha investigado y presentado el comportamiento del campo de flujo en diferentes cavidades representativas, capturando inestabilidades no estacionarias en diferentes geometrías que se pueden encontrar en motores aeronáuticos debido a la rotación del sistema. Los flujos rotativos presentan un comportamiento no simétrico en algunas condiciones de operación, afectando los patrones de flujo drásticamente en comparación con los casos estacionarios. También se revisarán los flujos básicos producidos por los discos rotativos, y su estabilidad, validando el método propuesto en estos flujos complejos con el correspondiente ahorro en recursos computacionales.

    Los resultados demuestran que el tiempo de cálculo se ha reducido sustancialmente en comparación con las simulaciones de corona completa, con una buena comparación en los resultados, lo que resulta atractivo para aplicaciones industriales.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus