Ayuda
Ir al contenido

Dialnet


Resumen de Evaluación del desempeño del sistema de riego: un análisis global y local en costa rica

Juan Gabriel Benavides Valverde

  • 1. introducción o motivación de la tesis La demanda creciente de productos agrícolas a nivel mundial centra su atención en el rendimiento de los cultivos, entendido como el peso de los productos agrícolas por unidad de área cosechada por unidad de tiempo. El incremento en la producción de cultivos está determinado principalmente por el aumento de los rendimientos actuales de los cultivos, hasta acercarse al potencial de rendimiento, que, a su vez, se espera que continúe aumentando con la mejora del fitomejoramiento y la agronomía, como ha ocurrido hasta ahora, particularmente desde la Revolución Verde de la década de 1960. La brecha de rendimiento se refiere a la diferencia entre el rendimiento potencial de un cultivo y el rendimiento actual de los agricultores en una escala de interés espacial y temporal especificada. La brecha de rendimiento agrícola es un índice de rendimiento utilizado para evaluar el rendimiento agrícola en diferentes escalas, ya sea en la parcela, distrito de riego, cuenca o región. Para mejorar el uso del agua en la agricultura, la evaluación del desempeño del riego es fundamental. Entre los indicadores para evaluar el desempeño de los sistemas de riego, está el suministro relativo de riego (RIS), que se determina como la relación entre el agua de riego consumida por los cultivos y el agua desviada de la fuente de suministro.

    2.contenido de la investigación Esta tesis doctoral presenta un análisis global del desempeño de los distritos de riego mediante la evaluación de los atributos clave que influyen en el RIS. Además, se analizó y caracterizó el desempeño de un esquema de riego tropical en Costa Rica durante un período de cinco años, de 2014 a 2018 a través de los indicadores RIS y la brecha de rendimiento. El primer análisis se basó en una revisión de informes y artículos científicos que recopilaron 264 casos de 25 países en seis regiones del mundo. La base de datos se sometió a dos tipos de análisis estadístico: un análisis de conglomerados de k-medias y un análisis de covarianza (ANCOVA).

    3.conclusión El ANCOVA mostró que los sistemas modernos de riego presurizado en la finca y los sistemas de distribución a demanda mejoran significativamente el RIS. El ANCOVA reveló que el RIS covaría significativamente con la variación en la precipitación, el cronograma de entrega, los sistemas de riego en la finca, la red de distribución y la región, pero no con el cultivo.

    El segundo análisis del esquema de riego tropical, mostró que el RIS osciló entre 2.48 y 3.78, valores muy superiores a los observados en esquemas de áreas templadas, pero que se encuentran en el rango más bajo de los valores de RIS documentados en otros esquemas de trópicos en el análisis global realizado aquí. Los rendimientos actuales se determinaron a través de encuestas semiestructuradas con los agricultores del esquema, quienes también brindaron información sobre otros temas de gestión del riego. Las brechas de rendimiento de los principales cultivos (arroz, caña de azúcar y forrajes) oscilaron entre 26-43%, 64-69% y 30-40%, respectivamente. La encuesta reveló que en este esquema los usuarios muestran un alto grado de satisfacción con el servicio, en cuanto al suministro de agua de riego y su costo, existen amplias oportunidades para mejorar el desempeño del esquema de riego y cerrar las brechas de rendimiento (ej. cronograma de abastecimiento de agua para evitar cortes en la cola de los canales y mejorar la red de drenaje).

    4. bibliografía Alam, M.M., Karim, M.R., Ladha, J.K., 2013. Integrating best management practices for rice with farmers’ crop management techniques: A potential option for minimizing rice yield gap. Field Crops Research 144, 62–68. https://doi.org/10.1016/j.fcr.2013.01.010 Alonso, A., Feltz, N., Gaspart, F., Sbaa, M., Vanclooster, M., 2019. Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco. Agricultural Water Management 212, 338–348. https://doi.org/10.1016/j.agwat.2018.08.033 Angulo, Á., Rodríguez, M., 2017. Caracterización y análisis del riego en el cultivo de canañ de azucar en la región Pacífico seco (Guanacaste y Puntarenas), de Costa Rica, in: Congreso Nacional de Suelos, 9, San José, Costa Rica, 2017. Memorias. Asociación Costarricense de La Ciencia Del Suelo (ACCS). p. 11. https://doi.org/10.1017/CBO9781107415324.004 ARESEP, 2015. Resolución RIA-009-2015.—San José, a las 14:00 horas con 40 minutos del 8 de setiembre del 2015. Expediente ET-168-2014. Diario oficial del gobierno de Costa Rica LA GACETA - N°180 72pp.

    Arviza, J., Balbastre, I., 2003. Redes colectivas de riego. Problemática general. Resolución de conflictos. Comunitat Valenciana Agraria 21, 57–66. https://doi.org/10.1017/CBO9781107415324.004 Ayers, R.S., Westcot, D.W., 1985. Water for agr Water uality for agriculture, FAO Irrigation and Drainage. Rome, Italy.

    BCCR, 2017. Cuentas AGUA 2012-2015. Banco Central de Costa Rica, San José, Costa Rica.

    Benavides, J., Hernández-Plaza, E., Mateos, L., Fereres, E., 2021. A global analysis of irrigation scheme water supplies in relation to requirements. Agricultural Water Management 243, 106457. https://doi.org/10.1016/j.agwat.2020.106457 Berbel, J., Expósito, A., Gutiérrez-Martín, C., Mateos, L., 2019. Effects of the Irrigation Modernization in Spain 2002–2015. Water Resources Management 33, 1835–1849. https://doi.org/10.1007/s11269-019-02215-w Berbel, J., Mateos, L., 2014. Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems 128, 25–34. https://doi.org/10.1016/j.agsy.2014.04.002 Bodirsky, B.L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., Lotze-Campen, H., 2015. Global food demand scenarios for the 21st century. PLoS ONE 10, 1–27. https://doi.org/10.1371/journal.pone.0139201 Borgia, C., García-Bolaños, M., Li, T., Gómez-Macpherson, H., Comas, J., Connor, D., Mateos, L., 2013. Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania. Agricultural Water Management 121, 19–26. https://doi.org/10.1016/j.agwat.2013.01.002 Borgia, C., García-Bolaños, M., Mateos, L., 2012. Patterns of variability in large-scale irrigation schemes in Mauritania. Agricultural Water Management 112, 1–12.

    Bos, M., 1997. Performance indicators for irrigation and drainage. Irrigation and Drainage Systems 11, 119–137.

    Bos, M., Burton, M., Molden, D., 2005. Irrigation and drainage performance assessment. Practical guidelines. CABI Publishing.

    Burek, P., Satoh, Y., Fischer, G., Kahil, M., Scherzer, A., Tramberend, S., Nava, L., Wada, Y., 2016. Water Futures and Solution. Fast track initiative. Luxemburg, Austria.

    Burt, C., Clemmens, A., Strelkoff, T., Solomon, K., Bliesner, R., Hardy, L., Howell, T., Eisenhauer, D., 1997. Irrigation Performance Measures: Efficiency and Uniformity. Journal of Irrigation and Drainage Engineering 123:6, 423–442.

    Burt, C., Styles, S., 1998. Modern water control and management practices in irrigation: Impact on performance, World Bank Research.

    Burt, C.M., Styles, S.W., 2000. Irrigation district service in the Western United States. Journal of Irrigation and Drainage Engineering 126, 279–282. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:5(279) Carrijo, D.R., Lundy, M.E., Linquist, B.A., 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002 Cassman, K.G., 1999. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America 96, 5952–5959. https://doi.org/10.1073/pnas.96.11.5952 Chang, J.-H., 1977. Tropical Agriculture: Crop Diversity and Crop Yields. Economic Geography 53, 241. https://doi.org/10.2307/143190 Clemmens, A.J., 2006. Improving irrigated agriculture performance through an understanding of the water delivery process. Irrigation and Drainage 55, 223–234. https://doi.org/10.1002/ird.236 Clemmens, A.J., Bos, M.G., 1990. Statistical methods for irrigation system water delivery performance evaluation. Irrigation and Drainage Systems 4, 345–365. https://doi.org/10.1007/BF01103713 Clemmens, A.J., Molden, D.J., 2007. Water uses and productivity of irrigation systems. Irrigation Science 25, 247–261. https://doi.org/10.1007/s00271-007-0067-y Davis, K.F., Gephart, J.A., Emery, K.A., Leach, A.M., Galloway, J.N., D’Odorico, P., 2016. Meeting future food demand with current agricultural resources. Global Environmental Change 39, 125–132. https://doi.org/10.1016/j.gloenvcha.2016.05.004 DRAT, 2018. Informe para la ARESEP de las actividades realizadas en el DRAT en el segundo semestre 2018 - SENARA-DRAT-RP-INF-01-2019. San José, Costa Rica.

    DRAT, 2017. Informe para la ARESEP de las actividades realizadas en el DRAT primer semestre de 2017 - SENARA-DRAT-RP-INF-07-2017. San José, Costa Rica.

    DRAT, 2016. Informe para la ARESEP de las actividades realizadas en el DRAT primer semestre de 2016 - DRAT-RP-INF- 011-2016. San José, Costa Rica.

    DRAT, 2015. Informe para la ARESEP de las actividades realizadas en el DRAT primer semestre de 2015 - DRAT-RP-INF- 009-2015. San José, Costa Rica.

    DRAT, 2014. Informe para la ARESEP de las actividades realizadas en el DRAT primer semestre de 2014 - DRAT-RP-INF- 009-2014. San José, Costa Rica.

    Evans, L., 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge, UK.

    FAO, 2020. FAOSTAT- Land Use Costa Rica [WWW Document]. URL http://www.fao.org/faostat/es/#data/RL (accessed 7.29.20).

    FAO, 2019. The State of Food Security and Nutrition in the World 2019, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2014.2300145 FAO, 2017. The future of food and agriculture – Trends and challenges. Roma.

    FAO, 2015. AQUASTAT - FAO’s Global Information System on Water and Agriculture -Country Profile - Costa Rica [WWW Document]. FAO. URL http://www.fao.org/nr/water/aquastat/countries_regions/CRI/index.stm (accessed 7.27.18).

    FAO, 2011. The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. The Food and Agriculture Organization of the United Nations and Earthscan, Rome and Earthscan, London.

    FAO, 2009. CROPWAT 8.0 [WWW Document]. Land & Water. Databases and Softwares. URL http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed 10.6.20).

    Fereres, E., Soriano, M.A., 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147–159. https://doi.org/10.1093/jxb/erl165 Gallup, J.L., Sachs, J., 2000. Agriculture, climate, and technology: Why are the tropics falling behind? American Journal of Agricultural Economics 82, 731–737. https://doi.org/10.1111/0002-9092.00071 García-Bolaños, M., Borgia, C., Poblador, N., Dia, M., Seyid, O.M.V., Mateos, L., 2011. Performance assessment of small irrigation schemes along the Mauritanian banks of the Senegal River. Agricultural Water Management 98, 1141–1152. https://doi.org/10.1016/j.agwat.2011.02.008 García-Vila, M., Lorite, I.J., Soriano, M.A., Fereres, E., 2008. Management trends and responses to water scarcity in an irrigation scheme of Southern Spain. Agricultural Water Management 95, 458–468. https://doi.org/10.1016/j.agwat.2007.11.009 Gerten, D., Heck, V., Jägermeyr, J., Bodirsky, B., Fetzer, I., Jalava, M., Kummu, M., Lucht, W., Rockström, J., Schaphoff, S., Schellnhuber, H., 2020. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nature Sustainability 3, 200–208.

    Gonçalves, F.M., Ribeiro, R.S. da F., Costa, R.N.T., Burte, J.D., 2015. A Management Analysis Tool for Emancipated and Public Irrigation Areas Using Neural Networks. Water Resources Management 29, 2393–2406. https://doi.org/10.1007/s11269-015-0948-4 Guilpart, N., Grassini, P., Sadras, V.O., Timsina, J., Cassman, K.G., 2017. Estimating yield gaps at the cropping system level. Field Crops Research 206, 21–32. https://doi.org/10.1016/j.fcr.2017.02.008 GWP, 2016. Costa Rica, in: Situación de Los Recursos Hídricos En Centroamérica: Hacia Una Gestión Integrada. Global Water Partnership Central America, Tegucigalpa, Honduras, p. 40.

    Haefele, S.M., Wopereis, M.C.S., Schloebohm, A.M., Wiechmann, H., 2004. Long-term fertility experiments for irrigated rice in the West African Sahel: Effect on soil characteristics. Field Crops Research 85, 61–77. https://doi.org/10.1016/S0378-4290(03)00153-9 Helfand, S.M.., Taylor, M.P.. H.., 2017. The Inverse Relationship between Farm Size and Productivity: Refocusing the Debate, in: Pacific Conference for Development Economics. California, p. 40.

    Hsiao, T., Steduto, P., Fereres, E., 2007. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrigation Science 25, 209–231. https://doi.org/10.1007/s00271-007-0063-2 Hussain, I., 2007. Poverty-Reducing impacts of irrigation: Evidence and lessons. Irrigation and Drainage 56, 147–164.

    Israelsen, O.W., 1950. Irrigation principles and practices, John Wiley and Sons, 2nd ed. Wolters Kluwer Health, Inc, New York.

    Jiménez, J., 2014. Manual de gestión del Riego. Fundación FAUTAPO.

    Key, N., 2019. Farm size and productivity growth in the United States Corn Belt. Food Policy 84, 186–195. https://doi.org/10.1016/j.foodpol.2018.03.017 Kima, A.S., Chung, W.G., Wang, Y.M., 2014. Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. Water (Switzerland) 6, 2830–2846. https://doi.org/10.3390/w6092830 Kloezen, W., Garcés-Restrepo, C., 1998. Assessing irrigation performance with comparative indicators: the case of the Alto Rio Lerma irrigation district, Mexico, (Research Report 22) Irrigation Water Management Institute. Colombo, Sri Lanka.

    Leite, J., Ciampitti, I., Mariano, E., Vieira-Megda, M., Trivelin, P., 2016. Nutrient partitioning and stoichiometry in unburnt sugarcane ratoon at varying yield levels. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00466 Letey, J., Hoffman, G.J., Hopmans, J.W., Grattan, S.R., Suarez, D., Corwin, D.L., Oster, J.D., Wu, L., Amrhein, C., 2011. Evaluation of soil salinity leaching requirement guidelines. Agricultural Water Management 98, 502–506. https://doi.org/10.1016/j.agwat.2010.08.009 Lewis, B.R., Mitchell, V.W., 1990. Defining and Measuring the Quality of Customer Service. Marketing Intelligence & Planning 8, 11–17. https://doi.org/10.1108/EUM0000000001086 Lobell, D., Cassman, K., Field, C., 2009. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179–204. https://doi.org/10.1146/annurev.environ.041008.093740 Lorite, I.J., Mateos, L., Fereres, E., 2004. Evaluating irrigation performance in a Mediterranean environment: I. Model and general assessment of an irrigation scheme. Irrigation Science 23, 77–84. https://doi.org/10.1007/s00271-004-0095-9 Lozano, D., Arranja, C., Rijo, M., Mateos, L., 2010a. Simulation of automatic control of an irrigation canal. Agricultural Water Management 97, 91–100. https://doi.org/10.1016/j.agwat.2009.08.016 Lozano, D., Arranja, C., Rijo, M., Mateos, L., 2010b. Simulation of automatic control of an irrigation canal. Agricultural Water Management 97, 91–100. https://doi.org/10.1016/j.agwat.2009.08.016 Lozano, D., Mateos, L., 2009. Field evaluation of ultrasonic flowmeters for measuring water discharge in irrigation canals. Irrigation and Drainage 58, 189–198. https://doi.org/10.1002/ird.404 Lozano, D., Mateos, L., 2008. Usefulness and limitations of decision support systems for improving irrigation scheme management. Agricultural Water Management 95, 409–418. https://doi.org/10.1016/j.agwat.2007.11.003 MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. California, pp. 281–296.

    Malano, H., Burton, M., 2001. Guidelines for benchmarking performance in the irrigation and drainage sector. FAO, Roma.

    Malhi, Y., Wright, J., 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 311–329. https://doi.org/10.1098/rstb.2003.1433 Mateo-Vega, J., 2001. Características Generales de la Cuenca del Río Tempisque, in: Jimenez, J., Gonzáles, E. (Eds.), La Cuenca Del Río Tempisque: Perspectivas Para Un Manejo Integrado. Organización para Estudios Tropicales, San José, Costa Rica, p. 150.

    Mateos, L., 2008. Identifying a new paradigm for assessing irrigation system performance. Irrigation Science 27, 25–34. https://doi.org/10.1007/s00271-008-0118-z Mateos, L., dos Santos Almeida, A.C., Frizzone, J.A., Lima, S.C.R.V., 2018. Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach. Agricultural Water Management 206, 176–186. https://doi.org/10.1016/j.agwat.2018.05.012 Mateos, L., López-Cortijo, I., Sagardoy, J.A., 2002. SIMIS: The FAO decision support system for irrigation scheme management. Agricultural Water Management 56, 193–206. https://doi.org/10.1016/S0378-3774(02)00035-5 Maule, R.F., Mazza, J.A., Martha, G.B., 2001. Produtividade agrícola de cultivares de cana-de-açúcar em diferentes solos e épocas de colheita. Scientia Agricola 58, 295–301. https://doi.org/10.1590/S0103-90162001000200012 Molden, D., 1997. Accounting for water use and productivity. System-wide initiative on water management (SWIM). Colombo, Sri Lanka.

    Molden, D.J., Gates, T.K., 1990. Performance measures for evaluation of irrigation water delivery systems. Journal of Irrigation and Drainage Engineering 116, 804–823. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:6(804) Molden, Sakthivadivel, Perry, C., de Fraiture, C., Kloezen, W., 1998. Indicators for Comparing Performance of Irrigated Agricultural Systems, International Water Management Institute. Sri Lanka. https://doi.org/10.1080/09500690500153808 Monteiro, L., Sentelhas, P., 2013. Potential and Actual Sugarcane Yields in Southern Brazil as a Function of Climate Conditions and Crop Management. Sugar Tech 16, 264–276. https://doi.org/10.1007/s12355-013-0275-0 Muchara, B., Ortmann, G., Wale, E., Mudhara, M., 2014. Collective action and participation in irrigation water management: A case study of Mooi River Irrigation Scheme in KwaZulu-Natal Province, South Africa. Water SA 40, 699. https://doi.org/10.4314/wsa.v40i4.15 Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. Closing yield gaps through nutrient and water management. Nature 490, 254–257. https://doi.org/10.1038/nature11420 Ntantos, P.N., Karpouzos, D.K., 2010. Application of data envelopment analysis and performance indicators to irrigation systems in Thessaloniki Plain (Greece). World Academy of Science, Engineering and Technology 46, 56–62.

    Ostrom, E., 2010. Analyzing collective action. Agricultural Economics 41, 155–166. https://doi.org/10.1111/j.1574-0862.2010.00497.x Pastor, A., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., Ludwig, F., 2019. The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability 2, 499–507. https://doi.org/10.1038/s41893-019-0287-1 Paul, M., wa Gĩthĩnji, M., 2018. Small farms, smaller plots: land size, fragmentation, and productivity in Ethiopia. Journal of Peasant Studies 45, 757–775. https://doi.org/10.1080/03066150.2016.1278365 Perry, C., Steduto, P., Karajeh, F., 2017. Does Improved Irrigation Technology Save Water ? Does Improved Irrigation Technology Save Water ? Cairo. https://doi.org/10.13140/RG.2.2.35540.81280 Pfeiffer, L., Lin, C.Y.C., 2014. Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Journal of Environmental Economics and Management 67, 189–208. https://doi.org/10.1016/j.jeem.2013.12.002 Plusquellec, H., 2009. Modernization of large-scale irrigation system: Is it an achievable objetive or a lost cause? Irrigation and Drainage 58, 229–243. https://doi.org/10.1002/ird Poussin, J.C., Wopereis, M.C.S., Debouzie, D., Maeght, J.L., 2003. Determinants of irrigated rice yield in the Senegal River valley. European Journal of Agronomy 19, 341–356. https://doi.org/10.1016/S1161-0301(02)00078-3 Qureshi, M.E., Ranjan, R., Qureshi, S.E., 2010. An empirical assessment of the value of irrigation water: The case study of Murrumbidgee catchment. Australian Journal of Agricultural and Resource Economics 54, 99–118. https://doi.org/10.1111/j.1467-8489.2009.00476.x Rada, N.E., Fuglie, K.O., 2019. New perspectives on farm size and productivity. Food Policy 84, 147–152. https://doi.org/10.1016/j.foodpol.2018.03.015 Radulovich, R.A., 1989. Optimization of rainfed tropical cropping in semi-dry areas: A case study. Agricultural Water Management 16, 337–352. https://doi.org/10.1016/0378-3774(89)90030-9 Ren, C., Liu, S., van Grinsven, H., Reis, S., Jin, S., Liu, H., Gu, B., 2019. The impact of farm size on agricultural sustainability. Journal of Cleaner Production 220, 357–367. https://doi.org/10.1016/j.jclepro.2019.02.151 Rodríguez-Díaz, J.A., Camacho-Poyato, E., López-Luque, R., Pérez-Urrestarazu, L., 2008. Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: An application in spain. Agricultural Systems 96, 250–259. https://doi.org/10.1016/j.agsy.2007.07.010 Rodriguez, M., Duran, J., Oviedo, M., Vargas, J., 2015. Evaluación agroindustrial de 15 variedades de caña de azúcar, durante tres cosechas, en la Central Azucarera del Tempisque (CATSA), Guanacaste, Costa Rica, in: VI Congreso Tecnológico Del Departamento de Investigación y Extensión de La Caña de Azúcar (DIECA) Liga Agrícola Industrial de La Caña de Azúcar (LAICA). Alajuela, Costa Rica, p. 14.

    Rosa, L., Rulli, M.C., Davis, K.F., Chiarelli, D.D., Passera, C., D’Odorico, P., 2018. Closing the yield gap while ensuring water sustainability. Environmental Research Letters 13, 104002. https://doi.org/10.1088/1748-9326/aadeef Rustinsyah, R., 2019. Determining the satisfaction level of water user association service quality for supporting sustainable rural development. Development Studies Research 6, 118–128. https://doi.org/10.1080/21665095.2019.1629821 Sagardoy Alonso, J., Playán, E., 2003. La modernización de la gestión de los sistemas de riego, in: Congreso Internacional de Riego y Drenaje CUBA-Riego 2003. Habana, Cuba, p. 17.

    Samson, B.K., Ali, A., Rashid, M.A., Mazid, M.A., Wade, L.J., 2004. Topographic position influences water availability in rainfed lowland rice at Rajshahi, northwest Bangladesh. Plant Production Science 7, 101–103. https://doi.org/10.1626/pps.7.101 Sanches, G.M., Graziano Magalhães, P.S., Junqueira Franco, H.C., 2019. Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma 334, 90–98. https://doi.org/10.1016/j.geoderma.2018.07.051 Sandoval, D., Mata, R., 2014. Base de perfiles de suelos de Costa Rica [en línea]: Versión 1. 2 [WWW Document]. Asociación Costarricense de la Ciencia del Suelo (ACCS). URL http://www.cia.ucr.ac.cr/?page_id=139 (accessed 8.31.20).

    Santos, C., Lorite, I.J., Tasumi, M., Allen, R.G., Fereres, E., 2008. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrigation Science 26, 277–288. https://doi.org/10.1007/s00271-007-0093-9 Serra-Wittling, C., Molle, B., Cheviron, B., 2019. Plot level assessment of irrigation water savings due to the shift from sprinkler to localized irrigation systems or to the use of soil hydric status probes. Application in the French context. Agricultural Water Management 223, 105682. https://doi.org/10.1016/j.agwat.2019.06.017 Silva, J.V., Reidsma, P., Laborte, A., van Ittersum, M., 2017. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modelling. European Journal of Agronomy 82, 223–241. https://doi.org/10.1016/j.eja.2016.06.017 Skogerboe, G., Merkley, G., 1996. Irrigation Maintenance and Operations Learning Process.

    Smith, M., 1992. CROPWAT. A Computer Program for Irrigation Planning and Management. FAO 46. FAO Land and Water Development Division, Rome, Italy.

    Snedecor, G., Cochran, W., 1989. Statistical Methods. Iowa State University Press.

    Solano Quintero, J., Villalobos Flores, R., 2001. Aspectos Fisiográficos aplicados a un Bosquejo de Regionalización Geográfico Climático de Costa Rica. Top. Meteor. Oceanog 1, 26–39.

    Song, L., Oeurng, C., Hornbuckle, J., 2015. Assessment of Rice Water Requirement by Using CROPWAT Model, in: The 15th Science Council of Asia Board Meeting and International Symposium. Japan, pp. 1–5.

    Steduto, P., Hsiao, T., Fereres, E., Raes, D., 2012. Crop yield response to water (FAO No.66), FAO Irrigation and Drainage. Rome, Italy.

    Steduto, P., Hsiao, T.C., Raes, D., Fereres, E., 2009. Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal 101, 426–437. https://doi.org/10.2134/agronj2008.0139s Styles, S., Mariño, M., 2002. Water Delivery Service as a Determinant of Irrigation Project Perfomance, in: 18th ICID Congress. ITRC, Montreal, Canada, p. 13pp.

    Tanaka, Y., Sato, Y., 2005. Farmers managed irrigation districts in Japan: Assessing how fairness may contribute to sustainability. Agricultural Water Management 77, 196–209. https://doi.org/10.1016/j.agwat.2004.09.043 Thorburn, P., Biggs, J., Webster, A., Biggs, I., 2011. An improved way to determine nitrogen fertiliser requirements of sugarcane crops to meet global environmental challenges. Plant and Soil 339, 51–67. https://doi.org/10.1007/s11104-010-0406-2 TIBCO-Software, 2017. Statistica (data analysis software system). http://statistica.io.

    Tsubo, M., Basnayake, J., Fukai, S., Sihathep, V., Siyavong, P., Sipaseuth, Chanphengsay, M., 2006. Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in Southern Laos. Field Crops Research 97, 209–220. https://doi.org/10.1016/j.fcr.2005.10.004 U.S. Government Accountability Office, 2019. Irrigated Agriculture. Technologies, Practices, and Implications for Water Scarcity. GAO Report GAO-20-128SP, U.S. Government Printing Office. Washington, D.C. https://doi.org/10.1007/978-3-319-76702-4_11 UNESCO, 2020. United Nations World Water Development Report 2020: Water and Climate Change. Paris.

    Van der Kooij, S., Zwarteveen, M., Boesveld, H., Kuper, M., 2013. The efficiency of drip irrigation unpacked. Agricultural Water Management 123, 103–110. https://doi.org/10.1016/j.agwat.2013.03.014 Venot, J.-P., Kuper, M., Zwarteveen, M. (Eds. ., 2018. Drip Irrigation for Agriculture: Untold Stories of Efficiency, Innovation and Development (Earthscan Studies in Water Resource Management).

    Wang, Y.M., Namaona, W., Traore, S., Zhang, Z.C., 2009. Seasonal temperature-based models for reference evapotranspiration estimation under semi-arid condition of Malawi. African Journal of Agricultural Research 4, 878–886.

    Wanvoeke, J., Venot, J.P., Zwarteveen, M., de Fraiture, C., 2015. Performing the success of an innovation: the case of smallholder drip irrigation in Burkina Faso. Water International 40, 432–445. https://doi.org/10.1080/02508060.2015.1010364 West, P., Gibbs, H., Monfreda, C., Wagner, J., Barford, C., Carpenter, S., Foley, J., 2010. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proceedings of the National Academy of Sciences of the United States of America 107, 19645–19648. https://doi.org/10.1073/pnas.1011078107 Zema, D.A., Nicotra, A., Mateos, L., Zimbone, S.M., 2018. Improvement of the irrigation performance in Water Users Associations integrating data envelopment analysis and multi-regression models. Agricultural Water Management 205, 38–49. https://doi.org/10.1016/j.agwat.2018.04.032 Zu, Q., Mi, C., Liu, D.L., He, L., Kuang, Z., Fang, Q., Ramp, D., Li, L., Wang, B., Chen, Y., Li, J., Jin, N., Yu, Q., 2018. Spatio-temporal distribution of sugarcane potential yields and yield gaps in Southern China. European Journal of Agronomy 92, 72–83. https://doi.org/10.1016/j.eja.2017.10.005


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus