Ayuda
Ir al contenido

Dialnet


Design of multi-feed uwb antennas using the theory of characteristic modes

  • Autores: Carlos Ramiro Peñafiel Ojeda
  • Directores de la Tesis: Miguel Ferrando Bataller (dir. tes.), Marta Cabedo Fabrés (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: Mariano Baquero Escudero (presid.), Otman Aghzout (secret.), Max Muñoz Torrico (voc.)
  • Programa de doctorado: Programa de Doctorado en Telecomunicación por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • The Theory of Characteristic Modes (TCM), developed by R.F. Harrington in the mid 1960's, has become, since the beginning of the 21st century, a fundamental tool for systematic antenna design, thanks to the physical vision it provides of radiation phenomena. Currently, many research groups worldwide have adopted this theory as part of their design methodology. However, the theory of characteristic modes has been used mainly for the analysis of planar structures, and there are few examples of application of the theory to 3D structures, given the difficulty involved in its analysis.

      This thesis aims to design multi-fed antennas with high bandwidth using TCM. The main novelty contribution is providing the application of characteristic modes theory to the analysis of 3D structures and the use of multi-feed to selectively excite specific radiation modes. Initially, an analysis of plane structures that interact with each other is presented, and a combination of ports is used to force the excitation of certain modes with good radiant behavior. Furthermore, it is shown that the resonances of an antenna are not only caused by a resonance mode, but also appear as a result of the combination of magnetic and electrical modes.

      The thesis proposes antenna designs with very low profile, obtained from the progressive folding of the previously studied planar structures. With the folding techniques, compact and low-profile antennas are designed, easily integrated, with very good radiation characteristics and a simple form of excitation.

      A systematic study of 3-dimensional canonical structures, such as rectangular and circular waveguides, is carried out. First, the waveguides and equivalent cavities with a classical approach are analyzed, obtaining the transverse electric TE and transverse magnetic TM field modes. Then, the same waveguides and cavities are analyzed applying the theory of characteristic modes, unifying and comparing for the first time the two types of analysis. The conclusions drawn from the analysis of the rectangular and circular waveguides have been applied to design two types of antennas, which provide good bandwidth and optimal radiation characteristics for 5G applications.

      The thesis includes a chapter in which different antenna prototypes are proposed, designed from the application of the characteristic modes theory. The conclusions obtained in each chapters of the thesis are taken advantage of and applied to specific designs, showing that using TCM, it is possible to design antennas that have good radiation characteristics and that can be easily integrated into devices that operate with new technologies. like 5G or IoT.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno