Extracellular electrophysiology is a technique widely used in neuroscience research. It can offer insights on how the brain works by measuring the electrical fields generated by neural activity. This is done through electrodes implanted in the brain and connected to amplification and digitization electronic circuitry. Of the many animal models used in electrophysiology experimentation, rodents such as rats and mice are among the most popular species.
Modern electrophysiology experiments seek increasingly complex conditions that are limited by acquisition hardware technology. Two particular aspects are of special interest: Closed-loop feedback and naturalistic behavior. In this thesis, we present developments aiming to improve on different facets of these two problems.
Closed-loop feedback encompasses all techniques in which stimuli is produced in response of an event generated by the animal. Latency, the time between trigger event and stimuli generation, must adjust to the biological timescale being studied. While modern acquisition systems feature latencies in the order of 10ms, response to fast events such as high-frequency electrical transients created by neuronal activity require latencies under $1ms$. In addition, algorithms for triggering or generating closed-loop stimuli can be complex, integrating multiple inputs in real-time. Integration of algorithm development into acquisition tools becomes an important part of experiment design.
For electrophysiology experiments featuring naturalistic behavior, animals must be able to move freely in ecologically meaningful environments, mimicking natural conditions. Experiments featuring elements such as large arenaa, environmental objects or the presence of another animals are, however, hindered by the wired nature of acquisition systems. Other physical constraints, such as implant weight or power restrictions can also affect experiment time, limiting their duration. Beyond the technical limits, complex experiments are enriched when electrophysiology data is integrated with multiple sources, for example animal tracking or brain microscopy. Tools allowing mixing data independently of the source open new experimental possibilities.
The technological advances presented on this thesis addresses these topics. We have designed devices with closed-loop latencies under 200us while featuring high-bandwidth interfaces. These allow the simultaneous acquisition of hundreds of electrophysiological channels combined with other heterogeneous data sources, such as video or tracking. The control software for these devices was designed with flexibility in mind, allowing easy implementation of closed-loop algorithms. Open interface standards were created to encourage the development of interoperable tools for experimental data integration.
To solve wiring issues in behavioral experiments, we followed two different approaches. One was the design of light headstages, coupled with ultra-thin coaxial cables and active commutator technology, making use of animal tracking. This allowed to reduce animal strain to a minimum allowing large arenas and prolonged experiments with advanced headstages.
A different, wireless headstage was also developed. We created a digital compression algorithm specialized for neural electrophysiological signals able to reduce data bandwidth to less than 65.5% its original size without introducing distortions. Bandwidth has a large effect on power requirements. Thus, this reduction allows for lighter batteries and extended operational time. The algorithm is designed to be able to be implemented in a wide variety of devices, requiring low hardware resources and adding negligible power requirements to a system.
Combined, the developments we present open new possibilities for neuroscience experiments combining electrophysiology acquisition with natural behaviors and complex, real-time, stimuli.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados