El presente trabajo de investigación aborda el estudio y desarrollo de una metodología para la detección de ataques informáticos mediante el uso de sistemas y técnicas inteligentes de reducción dimensional en el ámbito de la ciberseguridad. Con esta propuesta se pretende dividir el problema en dos fases. La primera consiste en un reducción dimensional del espacio de entrada original, proyectando los datos sobre un espacio de salida de menor dimensión mediante transformaciones lineales y/o no lineales que permiten obtener una mejor visualización de la estructura interna del conjunto de datos. En la segunda fase se introduce el conocimiento de un experto humano que permite aportar su conocimiento mediante el etiquetado de las muestras en base a las proyecciones obtenidas y su experiencia sobre el problema. Esta novedosa propuesta pone a disposición del usuario final una herramienta sencilla y proporciona unos resultados intuitivos y fácilmente interpretables, permitiendo hacer frente a nuevas amenazas a las que el usuario no se haya visto expuesto, obteniendo resultados altamente satisfactorios en todos los casos reales en los que se ha aplicado. El sistema desarrollado ha sido validado sobre tres supuestos reales diferentes, en los que se ha avanzado en términos de conocimiento con un claro hilo conductor de progreso positivo de la propuesta. En el primero de los casos se efectúa un análisis de un conocido conjunto de datos de malware de Android en el que, mediante técnicas clásicas de reducción dimensional, se efectúa una caracterización de las diversas familias de malware. Para la segunda de las propuestas se trabaja sobre el mismo conjunto de datos, pero en este caso se aplican técnicas más avanzadas e incipientes de reducción dimensional y visualización, consiguiendo que los resultados se mejoren significativamente. En el último de los trabajos se aprovecha el conocimiento de los dos trabajos previos, y se aplica a la detección de intrusión en sistemas informáticos sobre datos de redes, en las que se producen ataques de diversa índole durante procesos de funcionamiento normal de la red.
This research work addresses the study and development of a methodology for the detection of computer attacks using intelligent systems and techniques for dimensional reduction in the eld of cybersecurity. This proposal is intended to divide the problem into two phases. The rst consists of a dimensional reduction of the original input space, projecting the data onto a lower-dimensional output space using linear or non-linear transformations that allow a better visualization of the internal structure of the dataset. In the second phase, the experience of an human expert is presented, which makes it possible to contribute his knowledge by labeling the samples based on the projections obtained and his experience on the problem. This innovative proposal makes a simple tool available to the end user and provides intuitive and easily interpretable results, allowing to face new threats to which the user has not been exposed, obtaining highly satisfactory results in all real cases in which has been applied. The developed system has been validated on three di erent real case studies, in which progress has been made in terms of knowledge with a clear guiding thread of positive progress of the proposal. In the rst case, an analysis of a well-known Android malware dataset is carried out, in which a characterization of the various families of malware is developed using classical dimensional reduction techniques. For the second of the proposals, it has been worked on the same data set, but in this case more advanced and incipient techniques of dimensional reduction and visualization are applied, achieving a signi cant improvement in the results. The last work takes advantage of the knowledge of the two previous works, which is applied to the detection of intrusion in computer systems on network dataset, in which attacks of di erent kinds occur during normal network operation processes.
Este traballo de investigación aborda o estudo e desenvolvemento dunha metodoloxía para a detección de ataques informáticos mediante o uso de sistemas e técnicas intelixentes de reducción dimensional no ámbito da ciberseguridade. Esta proposta pretende dividir o problema en dúas fases. A primeira consiste nunha redución dimensional do espazo de entrada orixinal, proxectando os datos nun espazo de saída de menor dimensionalidade mediante transformacións lineais ou non lineais que permitan unha mellor visualización da estrutura interna do conxunto de datos. Na segunda fase, introdúcese a experiencia dun experto humano, que lle permite achegar os seus coñecementos etiquetando as mostras en función das proxeccións obtidas e da súa experiencia sobre o problema. Esta proposta innovadora pon a disposición do usuario nal unha ferramenta sinxela e proporciona resultados intuitivos e facilmente interpretables, que permiten facer fronte a novas ameazas ás que o usuario non estivo exposto, obtendo resultados altamente satisfactorios en todos os casos reais nos que se aplicou. O sistema desenvolvido validouse sobre tres supostos reais diferentes, nos que se avanzou en canto ao coñecemento cun claro fío condutor de avance positivo da proposta. No primeiro caso, realízase unha análise dun coñecido conxunto de datos de malware Android, no que se realiza unha caracterización das distintas familias de malware mediante técnicas clásicas de reducción dimensional. Para a segunda das propostas trabállase sobre o mesmo conxunto de datos, pero neste caso aplícanse técnicas máis avanzadas e incipientes de reducción dimensional e visualización, conseguindo que os resultados se melloren notablemente. O último dos traballos aproveita o coñecemento dos dous traballos anteriores, e aplícase á detección de intrusos en sistemas informáticos en datos da rede, nos que se producen ataques de diversa índole durante os procesos normais de funcionamento da rede.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados