This thesis is framed at the intersection between modern Machine Learning techniques, such as Deep Neural Networks, and reliable probabilistic modeling. In many machine learning applications, we do not only care about the prediction made by a model (e.g. this lung image presents cancer) but also in how confident is the model in making this prediction (e.g. this lung image presents cancer with 67% probability). In such applications, the model assists the decision-maker (in this case a doctor) towards making the final decision. As a consequence, one needs that the probabilities provided by a model reflects the true underlying set of outcomes, otherwise the model is useless in practice. When this happens, we say that a model is perfectly calibrated.
In this thesis three ways are explored to provide more calibrated models. First, it is shown how to calibrate models implicitly, which are decalibrated by data augmentation techniques. A cost function is introduced that solves this decalibration taking as a starting point the ideas derived from decision making with Bayes' rule. Second, it shows how to calibrate models using a post-calibration stage implemented with a Bayesian neural network. Finally, and based on the limitations studied in the Bayesian neural network, which we hypothesize that came from a mispecified prior, a new stochastic process is introduced that serves as a priori distribution in a Bayesian inference problem.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados