Ayuda
Ir al contenido

Dialnet


Effects of frequency and duration of flow intermittence on biodiversity and ecosystem functioning: insights from mediterranean streams

  • Autores: Rebeca Arias del Real
  • Directores de la Tesis: Margarita Menéndez López (dir. tes.), Isabel Muñoz Gràcia (dir. tes.)
  • Lectura: En la Universitat de Barcelona ( España ) en 2020
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: José Jesús Casas Jiménez (presid.), Núria Bonada i Caparrós (secret.), Joan Artigas Alejo (voc.)
  • Programa de doctorado: Programa de Doctorado en Ecología, Ciencias Ambientales y Fisiología Vegetal por la Universidad de Barcelona
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TESEO
  • Resumen
    • Intermittent rivers and ephemeral streams (IRES) are watercourses that naturally and periodically cease to flow. They represent more than half of the global river network and are expanding due to global change. In this thesis, I investigate the mechanisms linking flow intermittence with biodiversity and ecosystem functioning, which sustain biogeochemical cycles and energy transfer in the system. Chapter 1 analyzes the effects of hydrology, micro-habitat (surface and subsurface zones) and biotic features on organic matter decomposition and fungal biomass, in 20 streams. In Chapter 2, I assess the effect of different flow intermittence metrics (i.e., annual intermittence regime and recent aquatic status) on aquatic biodiversity, including both taxonomic and functional-trait-based metrics, in 33 streams. Chapter 3 analyzes how aquatic hyphomycete richness and composition (beta diversity and its turnover and nestedness components) are affected by a flow intermittence gradient and how these community changes affect organic matter decomposition, in 15 streams and in a microcosm approach. Finally, in Chapter 4, I explore how changes in both leaf litter quality and quantity determine the feeding preferences and growth of an invertebrate shredder.

      The results of Chapter 1 show that the subsurface zone contributes to maintaining microbial decomposition during non-flow periods in IRES, mainly because of the levels of fungal biomass present in the subsurface zone. In Chapter 2, I conclude that a combination of flow intermittence metrics are needed to explain the high dynamism of the invertebrate community in IRES and potentially ecosystem functioning. Moreover, this chapter shows that hydrological variables outweigh non-hydrological factors in explaining invertebrate community variation, thereby supporting the use of the former in IRES classification and bio-monitoring routines. Chapter 3 reveals that the reduction of aquatic hyphomycete richness and species turnover as a result of flow intermittence, could have negative effects on organic matter decomposition. Finally, in Chapter 4, I provide evidence on how flow intermittence reduces the quality of leaf litter, in terms of fungal richness and composition, fungal biomass and lipid content. These changes in food quality influence the consumption rates and growth of shredders, which are able to feed selectively on higher quality leaves, even though its availability is lower. Taken together, these results will help to improve the biomonitoring and management of IRES and to a better prediction of ecosystem trajectories in response to global change.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno