Cardiac arrhythmias are a major problem for health systems in the developed world due to their high incidence and prevalence as the population ages. Atrial fibrillation (AF) and ventricular fibrillation (VF), are amongst the most complex arrhythmias seen in the clinical practice. Clinical consequences of such arrhythmic disturbances include developing complex cardio-embolic events in AF, and dramatic repercussions due to sustained life-threatening fibrillatory processes with subsequent neurological damage under VF, leading to cardiac arrest and sudden cardiac death (SCD). However, despite the technological advances in the last decades, their intrinsic mechanisms are incompletely understood, and, to date, therapeutic strategies lack of sufficient mechanistic basis and have low success rates.
Most of the progress for developing optimal biomarkers and novel therapeutic strategies in this field has come from valuable techniques in the research of arrhythmia mechanisms. Amongst the mechanisms involved in the induction and perpetuation of cardiac arrhythmias such AF, dynamic high-frequency re-entrant and focal sources, in its different modalities, are thought to be the primary sources underlying the arrhythmia. However, little is known about the attractors and spatiotemporal dynamics of such fibrillatory primary sources, specifically dominant rotational or focal sources maintaining the arrhythmia. Therefore, a computational platform for understanding active, passive and structural determinants, and modulators of such dynamics was developed. This allowed stablishing a framework for understanding the complex multidomain dynamics of rotors with enphasis in their deterministic properties to develop mechanistic approaches for diagnostic aid and therapy.
Understanding fibrillatory processes is key to develop physiologically and clinically relevant scores and tools for early diagnostic aid. Specifically, spectral and time-frequency properties of fibrillatory processes have shown to highlight major deterministic behaviour of intrinsic mechanisms underlying the arrhythmias and the impact of such arrhythmic events. Using prior knowledge, signal processing, machine learning techniques and data analytics, we aimed at developing a reliable mechanistic risk-score for comatose survivors of cardiac arrest due to VF.
Cardiac optical mapping and electrophysiological mapping techniques have shown to be unvaluable resources to shape new hypotheses and develop novel mechanistic approaches and therapeutic strategies. This technology has allowed for many years testing new pharmacological or ablative therapeutic strategies, and developing multidomain methods to accurately track arrhymia dynamics identigying dominant sources and attractors. Even though, panoramic mapping is the primary method for simultaneously tracking electrophysiological parameters, its adoption by the multidisciplinary cardiovascular research community is limited mainly due to the cost of the technology. Taking advantage of recent technological advances, we focus on developing and validating low-cost optical mapping systems for panoramic imaging using clinically relevant models for basic research and bioengineering.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados