Ayuda
Ir al contenido

Dialnet


Advanced techniques for the characterization and experimental validation of passive inter-modulation effect (pim) in space communications systems

  • Autores: Davide Smacchia
  • Directores de la Tesis: Pablo Soto Pacheco (dir. tes.), Vicente Enrique Boria Esbert (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Manuel Catalá Civera (presid.), José María Muñoz Ferreras (secret.), Luca Pelliccia (voc.)
  • Programa de doctorado: Programa de Doctorado en Telecomunicación por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Modern satellite payloads operate in multicarrier scenarios, under a continuous demand for higher capacity links. This leads to an increase in the RF power levels, frequency of operation, and the number of transmitted channels, thus stimulating non-linear high-power effects, such as Multipactor, Corona, thermal issues and Passive Inter-Modulation (PIM). Among the above-mentioned phenomena, PIM is the less studied, or, at least, understood. This is due to its extreme non-linear nature and its close relation to workmanship, which make very difficult the development of models able to faithfully predict and explain PIM degradation. PIM terms, once ignited in the downlink, may interfere the weak signal to be detected in the uplink channel, thus threatening the payload throughput. Traditional PIM models are based on a two-carriers excitation. This is a simple and quite representative case, but has significant differences with the real multi- carrier scenario. This Ph.D. thesis work tries to diminish this gap by two novel contributions of relevance for real operation conditions. Firstly, the role of the carrier phases (neglected for two-carriers excitation) has been theoretically investigated. Secondly, a new model to account for the effect of non-contributing carriers for a given PIM term has been developed, which is based on a novel energy conservation assumption. The resulting models fit to experimental data. Due to the complexity of PIM modeling, PIM validation of RF components is conducted only by testing. The availability of low PIM test set-ups is therefore of great interest for the space industry. However, the design of low PIM test benches is challenging, as their intrinsic residual PIM has to be below the one requested to validate the test devices. For satellite hardware, the dynamic range between the RF power levels of the transmission carriers and the signal to be detected may be 185 dBc. During this Ph.D. thesis work, novel integrated test bed architectures in waveguide technology, both for conducted and radiated PIM scenarios, have been developed. These architectures consent a mitigation of the residual PIM of the test facility, being at the same time flexible, free from unwanted interactions and spurious resonances, and able to withstand considerable RF power levels for the transmission carriers. The key elements of these set-ups are the low PIM multiplexers, which may integrate two new families of waveguide filters able to provide a high number of transmission zeros, and therefore a high rejection, in the PIM reception channel. The test benches conceived for measuring conducted backward PIM, however, are normally unprotected from the PIM generated by the termination absorbing the high-power transmission carriers. To alleviate this situation, a new type of low PIM terminations in waveguide technology has been proposed and verified with PIM tests, showing a clear benefit in mitigating the residual PIM of the test facilities. Moreover, novel transitions able to improve the PIM performance of standard flanges have also been conceived. Finally, and with regard to radiated scenarios, a novel formulation able to convert payload PIM specifications to a practical PIM test is proposed. This formulation consents to link the power flux densities at the device under test (DUT) with the RF power levels measured by the test bench. Last, a large class of PIM measurements carried out with the novel test bed architectures have been reported. These measurements cover several frequency bands (C-, Ku-, K- and Ka) and different PIM scenarios, both conducted and radiated. The exceptional residual PIM noise floor of each test bed will be pointed out. In addition, PIM tests on an anechoic chamber facility, multi-layer insulation blankets (MLIs) and reflector mesh samples are presented, with interesting considerations about the geometry of the structure and the impact on the PIM performance of typical elements as sawing areas and rivets.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno