Ayuda
Ir al contenido

Dialnet


Positioning system and acoustic studies for the km3net deep-sea neutrino telescope

  • Autores: Didac Diego Tortosa
  • Directores de la Tesis: J. A. Martínez Mora (dir. tes.), Miguel Ardid Ramírez (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: Jaime Lloret Mauri (presid.), David G. Cerdeño (secret.), Jorge Arenas Bermúdez (voc.)
  • Programa de doctorado: Programa de Doctorado en Diseño, Fabricación y Gestión de Proyectos Industriales por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • Neutrinos are subatomic particles that travel through the Universe with tiny or no change in their trajectory. This means that, if they are detected traveling along their way, the position of their origin can be studied. Despite being the most abundant particle in space so far discovered, as it has no electrical charge and it only interacts, it has a very low probability of interaction, which is necessary to prove its presence. Given the possibilities of evidencing the presence of a neutrino, it is necessary to have huge volumes controlled by sensors capable of detecting them. In the case of interaction in a fluid such as water or ice with sufficient energy, a muon (or other charged particles), which travels faster than the speed of light, may be generated producing radiation called Cherenkov light. This is the light that underwater neutrino telescopes aim to detect, so they have installed optical sensors in the form of a three-dimensional array.

      KM3NeT is a neutrino detector belonging to the new generation of underwater telescopes designed to hold one cubic kilometer. It is currently under construction in the depths of the Mediterranean Sea. It consists of two detector nodes: ARCA, which is located 100 km off the coast of Portopalo di Capo Passero at a depth of 3400 m, and ORCA, 40 km off the coast of Toulon, submerged at a depth of 2400 m. The Detection Units (DUs) used are composed of a base that anchors them to the sea floor, 18 Digital Optical Modules (DOMs) attached along a pair of cables linking the base to a top buoy. Thus, it has a fixed DU on the seabed, standing in a vertical position (given the buoyancy of its elements), but susceptible to the sea currents. In order to be able to reconstruct the trajectory of a detected muon, it is necessary to know the position and orientation of each DOM. Therefore, KM3NeT has an Acoustic Positioning System (APS) and an Attitude and Heading Reference System (AHRS).

      On the one hand, the APS has acoustic receivers installed in each DOM (piezoceramic sensors) and at the base of each DU (hydrophones). On the other hand, there are Acoustic Beacons (ABs) at known positions that emit specific signals, which are used for the Acoustic Data Filter to register their detection at each receiver. By recording three or more emissions belonging to different ABs, the position of each piezoceramic sensor can be estimated. On the other hand, the AHRS indicates the value of yaw, pitch, and roll, suggesting the orientation of the DOM. With a combination of APS and AHRS (or independently), and making use of a Mechanical Model, the shape of the DU can be reconstructed. In this way, the situation of each DOM is known with higher accuracy. As far as the ABs are concerned, each one has been characterized in the laboratory thanks to a process that has been standardized, both in terms of measurements and subsequent analysis. In addition, a possible location for the installation of ABs is presented, ensuring good reception in all DOMs.

      Finally, it is intended to use the APS receivers in KM3NeT for the possible acoustic detection of neutrinos. There are theories that explain that when the interaction of an Ultra-High-Energy neutrino is produced, a peculiar thermoacoustic signal as a Bipolar Pulse (BP), with a narrow angle directivity is propagated. Thus, a complete calibration of the detector has been designed to determine whether the APS is ready for the possible capture of this type of signal. Moreover, an algorithm capable of selecting possible BP candidates is designed, developed, and tested. So far, 2.9 days of data have been analyzed using three hydrophones in ORCA and promising results have been obtained to pursue this line of research, proposing an alert system (trigger) to register the candidate events


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno