Ayuda
Ir al contenido

Dialnet


Resumen de Filter optimization for personal sound zones systems

Vicent Molés Cases

  • Personal Sound Zones (PSZ) systems deliver different sounds to a number of listeners sharing an acoustic space through the use of loudspeakers together with signal processing techniques. These systems have attracted a lot of attention in recent years because of the wide range of applications that would benefit from the generation of individual listening zones, e.g., domestic or automotive audio applications. A key aspect of PSZ systems, at least for low and mid frequencies, is the optimization of the filters used to process the sound signals. Different algorithms have been proposed in the literature for computing those filters, each exhibiting some advantages and disadvantages. In this work, the state-of-the-art algorithms for PSZ systems are reviewed, and their performance in a reverberant environment is evaluated. Aspects such as the acoustic isolation between zones, the reproduction error, the energy of the filters, and the delay of the system are considered in the evaluations. Furthermore, computationally efficient strategies to obtain the filters are studied, and their computational complexity is compared too. The performance and computational evaluations reveal the main limitations of the state-of-the-art algorithms. In particular, the existing solutions can not offer low computational complexity and at the same time good performance for short system delays. Thus, a novel algorithm based on subband filtering that mitigates these limitations is proposed for PSZ systems. In addition, the proposed algorithm offers more versatility than the existing algorithms, since different system configurations, such as different filter lengths or sets of loudspeakers, can be used in each subband. The proposed algorithm is experimentally evaluated and tested in a reverberant environment, and its efficacy to mitigate the limitations of the existing solutions is demonstrated. Finally, the effect of the target responses in the optimization is discussed, and a novel approach that is based on windowing the target responses is proposed. The proposed approach is experimentally evaluated in two rooms with different reverberation levels. The evaluation results reveal that an appropriate windowing of the target responses can reduce the interference level between zones.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus