La normativa ambiental potencia la revalorización de los residuos industriales y motiva su utilización como materias primas para la obtención de nuevos materiales útiles, en lugar de que dichos residuos sean depositados en rellenos, que a la postre pueden generar pasivos ambientales. Dentro de este contexto se planificó la síntesis de la zeolita NaP1 código GIS, de amplia utilización en el campo ambiental para la descontaminación de aguas residuales, particularmente polutas con metales pesados y, la síntesis de la zeolita A código LTA, con aplicaciones en la industria de detergentes en reemplazo de los fosfatos, causantes de acelerar la eutrofización del agua de lagos; esto utilizando como materia prima los residuos industriales provenientes de los procesos y operaciones unitarias del pasivado del aluminio por oxidación electrolítica anódica.
La presente investigación se enfoca en la recuperación indirecta del aluminio presente en los residuos industriales de anodizado de aluminio, transfiriéndolo a la estructura cristalina de las zeolitas. El residuo contiene elevadas concentraciones de aluminio, tal como lo prueban los resultados obtenidos mediante microscopía electrónica de barrido SEM (38.9% - 40.42%) y por espectroscopia de absorción atómica con llama AAS (37.16 g/100g); pero es pobre en contenido de silicio (0.93% - 0.74%) determinado por SEM y 1.83 g/100g determinado por AAS. Además, el residuo de anodizado de aluminio contiene concentraciones menores de cationes alcalinos y alcalinotérreos. El contenido de humedad del lodo es de 69.84% (n=28) y su pH cae en el rango 7.7 a 8.3 (1:5 w/v), que lo hace ligeramente alcalino. Se observó que la relación molar Si/Al es significativamente menor que la unidad, de lo cual se infiere que los residuos industriales tal como salen de la planta de tratamiento, no se pueden utilizar para la síntesis de zeolitas.
La caracterización de los residuos industriales deshidratados a 100°C por 4 y 24 horas mediante microscopia electrónica de barrido (SEM) y difracción de rayos-X muestran un material básicamente amorfo, sin morfología externa apreciable.
La composición fisicoquímica en términos del contenido de aluminio en los lodos de anodizado, permite plantear la recuperación del aluminio y cationes a través de la síntesis de zeolitas, utilizando como materia prima el residuo industrial, enriquecido con silicio proveniente de fuentes externas. Así para sintetizar la zeolita NaP1, código GIS, se enriqueció el lodo de anodizado con silicio proveniente de una solución de silicato de sodio grado analítico. Con la finalidad de identificar la concentración a la que se tiene los mejores resultados, se utilizó como agente de mineralización soluciones de NaOH en concentraciones 0.5M; 1.0M; 1.5M; 2.0M; 2.5M y 3.0M. Se instrumentó el método hidrotermal de síntesis a una temperatura constante de 100°C y 48 horas de tiempo de reacción, utilizando los residuos industriales húmedos.
Los materiales obtenidos a las diferentes condiciones de síntesis se han caracterizado mediante difracción de rayos-X y SEM. Así, las concentraciones 1.5M, 2.0M, 2.5M y 3.0M del agente de mineralización NaOH conducen a la síntesis de la zeolita NaP1 código GIS. Sin embargo, el producto obtenido utilizando como agente de mineralización NaOH 1.5M presenta cristales con morfología externa muy bien definida, en forma de esferas de tamaño homogéneo. Este material presenta una relación molar Si/Al de 2.44 y una fórmula teórica 0.98Na2O¿Al2O3¿4.88SiO2¿yH2O. Los materiales obtenidos con concentraciones más altas del agente de mineralización, aun presentando un difractograma de rayos-X correspondiente a la zeolita NaP1, en el microscopio electrónico muestran cristales poco formados y de tamaños muy diferentes. De esto se infiere que el agente de mineralización NaOH 1.5M presenta los mejores resultados en términos de morfología.
Utilizando como fuente de enriquecimiento de silicio el silicato de sodio comercial, se sintetizó la zeoli
© 2001-2024 Fundación Dialnet · Todos los derechos reservados