Todas estructuras, especialmente las conformadas con hormigón armado, no solo deben cumplir con la seguridad necesaria bajo los Estados Límites Últimos (ULS), además es imprescindible que garanticen un comportamiento adecuado frente a condiciones de servicio. En general, los requisitos fundamentales de servicio que debe cumplir este tipo de estructuras son: la funcionalidad, comodidad para el usuario y la apariencia. Sin embargo, estos no se pueden verificar de forma directa; por lo tanto, ha sido necesario definir criterios de desempeño tales como control de deflexión, control de vibración y control de agrietamiento para dar cumplimiento a lo indicado anteriormente. Además, se dificulta el cálculo de la capacidad de servicio debido al fenómeno de agrietamiento, el efecto de rigidez por tensión, la contracción y los efectos de fluencia. Por lo tanto, el control de la fisuración en estructuras de hormigón armado generalmente se logra limitando la tensión en el refuerzo de acero y la matriz de hormigón. Siendo así que, en los diseños incluidos en códigos relevantes a hormigón, especifican la tensión máxima del refuerzo de acero después de la fisuración y el ancho máximo de fisura para los miembros estructurales de CR o FRC, no obstante los aspectos de capacidad de servicio del diseño para el hormigón reforzado con fibras de ultra alto rendimiento reforzado (R-UHPFRC), no han sido incluidos en los códigos o recomendaciones de UHPFRC. A pesar de que se han realizado muchos esfuerzos en la investigación tanto experimental como teórica sobre el comportamiento de servicio de los elementos estructurales de CR o FRC durante las últimas décadas, para el R-UHPFRC se debe desarrollar aún más su conocimiento relacionado con los requisitos para el diseño de capacidad de servicio, incluyendo su comportamiento de tensión y agrietamiento. En este marco, el objetivo principal de la presente tesis doctoral es evaluar el comportamiento de servicio de R-UHPFRC. Por tal razón, es fundamental realizar la evaluación del comportamiento de deformación y fisuración de los elementos de tracción R-UHPFRC. Para ello, se abordaron y cumplieron adecuadamente dos puntos principales. El primero, diseñar una metodología de prueba innovadora y adecuada para ejecutar los experimentos requeridos para este proyecto de doctorado. En segundo lugar, se llevó a cabo la evaluación de la respuesta de rigidez a la tensión y el comportamiento de agrietamiento del R-UHPFCR, que son parámetros primordiales para el diseño de capacidad de servicio. Para estudiar estos dos parámetros, se consideraron algunos parámetros importantes tales como: el efecto del volumen del contenido de fibra, el tipo de fibra, el efecto del tamaño, el efecto de la relación de refuerzo y el efecto de la contracción. Finalmente, para evaluar los parámetros mencionados, se presentan cuatro campañas experimentales. Cada una de ellas, representa un nivel diferente de estudio. El primero corresponde a la validación de la metodología de ensayo de tracción propuesta y examinar los datos experimentales obtenidos, para emplearlos en futuros estudios de este proyecto. El segundo nivel consistió en establecer y realizar experimentos completos con dos tipos de fibra de acero, modificando además su cantidad, es así como se utilizaron diferentes proporciones de refuerzo y sección transversal para evaluar el efecto tanto del tamaño como del contenido de fibra, respectivamente. También, en un estudio experimental específico se indagó sobre el efecto de la combinación de micro y microfibras de acero en la deformación y el comportamiento de agrietamiento de los elementos R-UHPFRC de tracción. El tercer nivel corresponde a una prueba de contracción intensiva, necesaria para obtener el valor de contracción del UHPFRC utilizado en esta investigación. El último nivel comprende la modificación de la geometría de la probeta y el uso de probetas en forma de hueso de perro para evaluar el ancho medio y máximo de fisura...
All structures, particularly reinforcement concrete structures, apart from meeting necessary security against Ultimate Limit States (ULS), must exhibit appropriate behaviour under service conditions. Generally, the fundamental serviceability requirements that concrete structures should meet are functionality, user comfort and appearance. These requirements cannot, however, be directly checked. Therefore, performance criteria, such as deflection control, vibration control and cracking control, are defined to meet these requirements.
Serviceability calculation is complicated because of the cracking phenomenon, the tension stiffening effect, shrinkage, and creep effects. Cracking control in reinforced concrete (RC) structures is generally achieved by limiting stress in steel reinforcement and the concrete matrix. Many concrete code designs specify a maximum steel reinforcement stress after cracking and a maximum crack width for RC or fibre-RC (FRC) structural members, while the design serviceability aspects for Reinforced Ultra-High Performance Fibre-Reinforced Concrete (R-UHPFRC) are poorly considered in UHPFRC codes or recommendations.
Many efforts have been made in experimental and theoretical research into the serviceability behaviour of RC or FRC structural elements in the last few decades. However, for R-UHPFRC, knowledge about tension and cracking behaviour must improve and serviceability design requirements have to be further studied. Within this framework, the main purpose of the present PhD thesis is to evaluate the serviceability behaviour of R-UHPFRC. For this purpose, the evaluation of the deformation and cracking behaviour of R-UHPFRC tensile elements is essential. To that end, two main items were addressed and adequately met. The first one was to design an innovative and adequate test methodology to carry out the experiments required for this PhD project. The second involved evaluating the tension stiffening response and cracking behaviour of R-UHPFRC, which are fundamental parameters for R-UHPFRC structures' serviceability design. To study these two parameters, important parameters were considered, such as fibre content, fibre type, size effect, reinforcement ratio and shrinkage effect.
In order to evaluate the aforementioned parameters, four experimental campaigns are presented. Each campaign represents a different study level. The first corresponds to the validation of the proposed tensile test methodology and to the examination of the obtained experimental data for future studies required for this PhD project. The second experimental study level corresponds to establishing and undertaking comprehensive experimental programmes with two different steel fibre types and fibre contents. Different cross-section and reinforcement ratios were used to evaluate the size effect and fibre content effect, respectively. The effect of the micro- and macro-steel fibres combination on the deformation and cracking behaviour of tensile R-UHPFRC elements was investigated in a specific experimental study. The third level corresponds to an intensive shrinkage test, which was conducted to obtain the shrinkage value of the UHPFRC used in this PhD study. The final level corresponds to a specific experimental study, done by modifying the specimen's geometry and using the dog bone-shaped specimens to evaluate the average and maximum crack width (real detected value) caused by tensile stresses in R-UHPFRC tensile elements. It is worth mentioning that different analyses were performed for each experimental research and appropriate results were achieved to fulfil the thesis aims.
Keywords: cracking behaviour, design criteria, durability, fragility curve, post-cracking tensile stiffness, serviceability behaviour, shrinkage, SLS requirements, structural design, tensile elements, tension stiffening, test method, tie, UHPFRC.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados