Ayuda
Ir al contenido

Dialnet


On the influence of inlet geometry on turbocharger compressor noise

  • Autores: Ferran Roig Villanueva
  • Directores de la Tesis: Alberto Broatch Jacobi (dir. tes.)
  • Lectura: En la Universitat Politècnica de València ( España ) en 2023
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Galindo Lucas (presid.), Francisco Javier Martos Ramos (secret.), Gianluca Montenegro (voc.)
  • Programa de doctorado: Programa de Doctorado en Sistemas Propulsivos en Medios de Transporte por la Universitat Politècnica de València
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • In today's society, there is a growing awareness of the importance of global warming. This concern is reflected by the legislative powers of Western nations in increasingly restrictive emissions regulations. In this context, the automotive industry has been strongly encouraged to develop more efficient thermal engines and even to explore new propulsion solutions, such as the electric motor.

      The trend adopted to improve the energy efficiency of reciprocating internal combustion engines is the reduction of engine size. This has forced compressors to work in more extreme conditions, where their acoustic emission becomes troublesome.

      The literature review carried out in this thesis shows that in the last two decades, there has been a great boom of research in the acoustics of radial turbocharger compressors. Despite the progress made, there is still no consensus about the cause of specific spectrum components, such as the broadband noises known as whoosh and Tip Clearance Noise (TCN). The influence of compressor inlet duct geometry on noise is also scarcely explored. This thesis presents a computational methodology of flow field analysis that allows the identification of the flow structures responsible for the most relevant spectral components and the analysis of the influence of operating conditions and inlet geometries on them.

      The pressure field inside the compressor is analyzed through modal decomposition techniques. These allow identifying spatial patterns and associating them to the frequencies of the measured spectrum in an objective manner. Subsequently, the flow structures corresponding to these patterns are identified, and their evolution with the operating conditions and the inlet geometry is analyzed. Through the application of the described methodology, the different mechanisms of generation of the tonal noises in the inducer and the impeller trailing edge are identified. While the former is related to the sonic conditions at the leading edge, the latter is excited by the asymmetric pressure field in the diffuser. As for the aforementioned broadband noises, the vortices encountered upstream of the inducer generate oscillations in the whoosh frequency band and favor rotating stall, contributing to such noise in the diffuser and volute. Unsteady blade surface loading is identified as an important contributor to TCN noise.

      The influence of operating conditions on noise generation manifests through the intensity of the backflow in the inducer. The occurrence of backflow is characteristic of low mass flow points, although it is also found, with less intensity, at some higher mass flow points. The backflow inhibits the sonic conditions at the leading edge, weakening the tonal noise at the blade passing frequency. As for broadband noise, reverse flow is the cause of vortices in the inducer that produce whoosh noise and rotating stall. It also promotes the unsteady blade loading associated with TCN.

      The role of the inlet duct geometry in the noise depends on its degree of interaction with the inducer vortices. In geometries that limit the upstream extent of these vortices, such as low curvature radii elbows, intense interaction of the vortices with the duct walls and other vortices occurs. This is correlated with an increase in whoosh noise. Inlet ducts that are sufficiently separated from the vortices only affect noise through their transmission properties regarding acoustic oscillations generated in the impeller and diffuser.

      At the end of the thesis, reflections are offered on the contributions of the results to the current knowledge on compressor noise. In addition, new lines of research are proposed to extend the methodology presented and to complete the set of operating conditions and inlet geometries analyzed in this work.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno