Continuously tightening pollutant and noise emission regulations have been the key motivation for engine -and engine related technology- research, development and optimization. Such trend gave rise to the gradual introduction of after-treatment systems to reduce pollutant emissions in automotive applications. Experimental and modelling approaches were used to study and characterize the acoustic and fluid-dynamic behavior of a diverse set of state-of-the-art after-treatment systems and devices, covering a wide range of elements and characteristics representative of after-treatment applications of commercial use. Transmission loss and pressure drop were selected as the key parameters to account for the sound attenuation and back-pressure generated by each device. Well established measurement facilities and procedures were used for the experimental characterization. In parallel, 1D, 3D CFD and even coupled 1D-3D simulation approaches on the basis of the "virtual twinning" concept were implemented on commercial software, aiming to replicate the experimental results in order to provide additional information and help deepen the understanding of internal phenomena, three-dimensional flow and acoustic effects.
Prior to the thorough characterization of the devices, the validity and significance of acoustic cold (ambient) condition measurements, as those to be taken, to represent the devices in their actual operating condition, i.e. hot and pulsating-flow as in the hot-end of exhaust lines were after-treatment systems are usually placed, was verified. Once such validation was done, for each system or device pressure drop measurements were performed for a range of mass flow rates, usually between 0 to 800 kg/h. Similarly, transmission loss measurements were performed at no-flow condition and with three different superimposed mean mas flow rates, commonly 100, 200 and 300 kg/h. The information produced, with some post-processing, decomposition and comparative analysis, and the use of inductive reasoning were used to account and relate each element with their effects.
Additionally, some other topics were assessed, such as the compliance of the additivity property of pressure drop and the transmission loss when several after-treatment devices are arranged together as an after-treatment system, the actual importance of auxiliary devices often overlooked, the changes in the early service life of a device with a GPF monolith, the benefits of performing decomposition analysis to the transmission loss, the capabilities of 1D and 3D CFD to produce useful information and the eventual benefits of 1D-3D co-simulation.
Overall, a comprehensive database on the pressure drop and transmission loss of state-of-the-art after-treatment devices and systems was produced. The experimental methodologies used, with their corresponding post processing, proved to be adequate and to produce significant information, especially after the validation of ambient condition acoustic measurements regarding engine-like conditions.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados