La reconstrucción 3D se ha convertido en un área atractiva de investigación para la comunidad en visión artificial, especialmente en aplicaciones de control de calidad en la industria. Mediante la inspección visual automática de un producto es posible detectar defectos no visibles para el ojo humano, lo que permite mejorar la calidad de los productos, aumentar la velocidad de producción, eliminar errores de subjetividad, integrar la línea de producción con otros sistemas y reducir costos. La comunidad se ha inclinado en resolver el problema de detección y reconocimiento de defectos superficiales a través de imágenes 2D, sin embargo, cuando los defectos son a escala submilimétrica y los defectos no presentan un fuerte contraste, la identificación del defecto es aún un reto, además en algunas aplicaciones es necesario la cuantificación del defecto con el fin de obtener información del proceso que lo produjo, en cuyo caso se debe usar información 3D. Debido a lo anterior, este trabajo propone un método para la detección y reconocimiento de defectos superficiales a partir de la reconstrucción 3D de la pieza. En esta tesis, nosotros proponemos un descriptor local 3D altamente discriminante, que permite clasificar los elementos de una nube de puntos en 5 primitivas, hueco, cresta, base de cresta, borde de hueco y plano, luego se realiza una proyección 2D de las primitivas obteniendo una representación 2D de la región a la cual se extraen características geométricas que permiten reconocer el tipo de defecto.
© 2001-2025 Fundación Dialnet · Todos los derechos reservados