Ayuda
Ir al contenido

Dialnet


Aceptación y rechazo de recomendaciones algorítmicas

  • Autores: Sebastián Visotsky
  • Directores de la Tesis: J. Daniel Aromí (dir. tes.)
  • Lectura: En la Pontificia Universidad Católica Argentina (UCA) ( Argentina ) en 2022
  • Idioma: español
  • Enlaces
  • Resumen
    • La tecnología está influyendo y modelando la forma en que actuamos en la vida cotidiana. También el proceso de toma de decisiones se modifica con los cambios en los sistemas de información y las nuevas tecnologías.

      Nuestro objetivo fue evaluar cómo actúan los agentes decisorios expuestos a algoritmos de recomendación, así como el posible cambio en este patrón en caso de un escenario adverso a lo recomendado por el algoritmo.

      Medimos los resultados de la utilización de algoritmos en el plano económico, la tasa de adopción y rechazo de las recomendaciones proporcionadas y el precio que están dispuestos a pagar los agentes. Para ello realizamos tres experimentos a través de los cuales evaluamos la toma de decisiones: el primero en condiciones de certidumbre, el segundo en condiciones de riesgo y el tercero en condiciones de incertidumbre.

      Supusimos que la tasa de adopción de las recomendaciones emitidas por los algoritmos sería adoptada en forma creciente con cada iteración. La iteración daría, al participante, la posibilidad de familiarizarse con la herramienta y al constatar los resultados podría apreciar los beneficios de utilizarla. El crecimiento en la adopción y valoración del algoritmo a medida que avanzaban los experimentos se observó en el experimento I, en condiciones de certidumbre. En los experimentos II y III el objetivo era además evaluar si un escenario adverso, luego de adoptar la recomendación, generaba una menor tasa de adopción en las recomendaciones subsiguientes. En condiciones de riesgo o incertidumbre podemos tomar una buena decisión y tener un mal resultado (good decisions bad outcomes). En caso de comprobar que un escenario adverso a la recomendación del algoritmo generaba rechazo de las siguientes recomendaciones, podíamos afirmar que esa actitud coincidía con las investigaciones y publicaciones de los últimos años, respecto a la intolerancia de los usuarios a los errores de los algoritmos. Este resultado sería significativo ya que los errores son corregibles mientras que los resultados adversos en decisiones inciertas no los son y suelen ser más frecuentes. Según lo observado en nuestros experimentos, los participantes juzgan los escenarios adversos a la recomendación de manera similar a un error del algoritmo.

      Creemos que será vital para el éxito de la adopción de algoritmos de recomendación, encontrar las formas de modificar esta percepción de los usuarios. En los experimentos observamos importantes diferencias de género en la propensión a aceptar las recomendaciones de los algoritmos, en la auto percepción de las capacidades, en la valoración de los algoritmos y su influencia sobre las decisiones.

      Los sesgos de autoservicio y outcome se detectaron en casi todos sus aspectos. Los balances finales de los participantes, que dependían en gran medida del azar, resultaron ser significativos a la hora de autoevaluar las capacidades propias, la de los algoritmos, el nivel de arrepentimiento y la percepción de control sobre los resultados.

      Algunos resultados específicos de cada experimento son interesantes de resaltar y merecen mayor investigación. Principalmente el factor que jugó la impaciencia en el experimento III para esperar la recomendación del algoritmo. En el experimento II el momento de la primera pérdida también tuvo influencia en la auto percepción de las capacidades propias, la del algoritmo y la sensación de arrepentimiento.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno