Ayuda
Ir al contenido

Dialnet


Técnicas de submuestreo, toma de decisiones y análisis de diversidad en aprendizaje supervisado con sistemas múltiples de clasificación

  • Autores: Rosa María Valdovinos Rosas
  • Directores de la Tesis: J. S. Sanchez (dir. tes.)
  • Lectura: En la Universitat Jaume I ( España ) en 2006
  • Idioma: español
  • ISBN: 84-690-1036-0
  • Número de páginas: 242
  • Tribunal Calificador de la Tesis: Filiberto Pla Bañón (presid.), Francesc Josep Ferri Rabasa (secret.), Luisa Micó Andrés (voc.), José Cristobal Riquelme Santos (voc.), Jordi Vitrià Marca (voc.)
  • Materias:
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • En la presente Tesis Doctoral, se analiza fundamentalmente la aplicabilidad de los Sistemas de Múltiple Clasificación (SMC) en el marco de la regla del vecino más cercano. Una primera línea fundamental de investigación se centra en los algoritmos de preprocesado, con el objetivo de resolver diferentes problemas relacionados con la calidad de la muestra de entrenamiento: presencia de patrones redundantes, atípicos o ruidosos, bases de datos con un tamaño excesivo y desbalance entre las distribuciones de las clases. Otro aspecto de gran relevancia hace referencia a la efectividad de los componentes individuales del SMC dentro del método de votación, para lo cual se proponen nuevas técnicas de ponderación dinámica y estática de las decisiones individuales. El tercer punto central se refiere al análisis de diversidad de los clasificadores, utilizando para ello diversas medidas existentes en la literatura afín. Otras cuestiones ampliamente analizadas a lo largo de esta tesis son: las técnicas de muestreo (bagging, boosting, arcing y selección secuencial aleatoria), el tamaño del SMC y, por último, la viabilidad de utilizar dos modelos de redes neuronales artificiales (perceptrón multicapa y red modular).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno